References

1. S. Bochner, Boundary values of analytic functions in several variables and of almost periodic functions, Ann. of Math. 45 (1944), 708-722.

2. K. de Leeuw, and I. Glicksberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205.

3. H. Helson, Compact groups with ordered duals, Proc. London Math. Soc. XIV A (1965), 144-156.

4. ——, Invariant subspaces, Academic Press, New York, 1964.

5. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables. I, Acta Math. 99 (1958), 165-201.

6. ——, Prediction theory and Fourier series in several variables. II, Acta Math. 106 (1961), 175–212.

7. G. Kallianpur and V. Mandrekar, Representation and multiplicity of purely non-deterministic stochastic processes, Theory of Probability and its Applications X (1966).

8. G. W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313-326.

9. M. G. Nadkarni, On a class of measures on Bohr group, Pacific J. Math. (to appear).

10. J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. (1931), 570-578.

11. F. Riesz and B. Sz-Nagy, Functional analysis, Ungar, New York, 1955.

12. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

UNIVERSITY OF MINNESOTA

A NONLINEAR BOUNDARY VALUE PROBLEM

BY R. WILHELMSEN

Communicated by H. A. Antosiewicz, May 22, 1967

1. Introduction. The main result of this paper establishes the existence of solutions of certain nonlinear two point boundary value problems for a class of nonlinear second order differential equations.

A corollary to the main theorem includes a boundary value problem recently considered by Herbert B. Keller [1] and Klaus Schmitt [2].

2. Definitions. In the following definitions let S stand for a point set in the VZ-plane.

$$\begin{split} &A = \{S: S \text{ is an arc}\}, \\ &H_1 = \{S: (Y_1, Z_1), (Y_2, Z_2) \in S \Rightarrow (Y_1 - Y_2)(Z_1 - Z_2) \ge 0\}, \\ &H_2 = \{S: (Y_1, Z_1), (Y_2, Z_2) \in S \Rightarrow (Y_1 - Y_2)(Z_1 - Z_2) \le 0\}, \\ &J_1 = \{S: \forall \exists (Y, Z) \in S \ni Z = N\}, \\ &J_2 = \{S: \forall \exists (Y, Z) \in S \ni Y - Z = N\}, \\ &R = \{(X, Y, Z): X_1 \le X \le X_2, |Y| + |Z| < \infty\}, \\ &B_0 = \{f(X, Y, Z): f \text{ is continuous in } R\}, \end{split}$$

 $B_{1} = \{f(X, Y, Z): Y_{1} > Y_{2} \Longrightarrow f(X, Y_{1}, Z) > f(X, Y_{2}, Z)\}, \\B_{2} = \{f(X, Y, Z): \exists \text{ constant } K \supseteq |f(X, Y, Z_{1}) - f(X, Y, Z_{2})| \\\leq K |Z_{1} - Z_{2}|\}.$

3. The main theorem. Let L_1 and M_1 be in $A \cap H_1 \cap J_1$ and let L_2 and M_2 be in $A \cap H_2 \cap J_2$. Let M_1 be bounded above by L_1 ; let M_2 be bounded above and to the right by L_2 , in the sense that there are no points $(Y_M, Z_M) \in M_2$ and $(Y_L, Z_L) \in L_2$ such that $Y_M > Y_L$ and $Z_M > Z_L$. Let P_1 be a connected set in the region of the YZ-plane bounded by L_1 and M_1 , and let P_2 be a connected set in the region of the sets P_1 and P_2 be closed.

THEOREM. If $F_a(X, Y, Z)$, $F_b(X, Y, Z)$, and f(X, Y, Z) are in B_0 , F_a and F_b are in $B_1 \cap B_2$, and $F_a(X, Y, Z) > f(X, Y, Z) > F_b(X, Y, Z)$ for all $(X, Y, Z) \in \mathbb{R}$, then there is a $y(X) \in C^2[X_1, X_2]$ such that y''(X) = f(X, y(X), y'(X)) for all $X \in [X_1, X_2]$, $(y(X_1), y'(X_1)) \in P_1$ and $(y(X_2), y'(X_2)) \in P_2$.

The proof, which will be given in detail elsewhere, utilizes properties of solution funnels of continuous differential equations, developed by H. Kneser [3] and M. Fukuhara [4], and existence theorems for a more restricted class of boundary value problems by M. Lees [5] and J. W. Bebernes [6].

The significance of the theorem is as follows: the function f(X, Y, Z) in the differential equation need not be locally smooth in Z (i.e., no Lipschitz condition is imposed), nor need f(X, Y, Z) be nondecreasing in Y; the nonlinear boundary sets P_1 and P_2 are quite general, and in particular need not be differentiable curves.

References

1. H. B. Keller, Existence theory for two point boundary value problems, Bull. Amer. Math. Soc. 72 (1966), 728-731.

2. Klaus Schmitt, Solutions to boundary value problems and periodic solutions of second-order nonlinear differential equations, Ph.D. Thesis, University of Nebraska, Lincoln, Nebr., 1967.

3. H. Kneser, Ueber die Lösungen eines Systems gewöhnlicher Differentialgleichungen das der Lipschitzschen Bedingung nicht genügt, S.-B. Preuss. Akad. Wiss. Phys.—Math. Kl. II (1923), 171–174.

4. M. Fukuhara, Sur l'ensemble des courbes integrales d'un systeme d'équations différentielles ordinaires, Proc. Imperial Acad. Japan 4 (1928), 448-449.

5. M. Lees, A boundary value problem for nonlinear ordinary differential equations, J. Math. Mech. 10 (1961), 423-430.

6. J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math. 13 (1963), 1053-1066.

UNIVERSITY OF UTAH