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1. Introduction. The main result of this paper establishes the 
existence of solutions of certain nonlinear two point boundary value 
problems for a class of nonlinear second order differential equations. 

A corollary to the main theorem includes a boundary value problem 
recently considered by Herbert B. Keller [ l ] and Klaus Schmitt [2]. 

2. Definitions. In the following definitions let S stand for a point 
set in the FZ-plane. 

A = {S: S is an arc}, 
Hx= \S: (Fi, Zi), (F2, Z2)ES=^(Y1^ P « ) ( Z i - Z , ) a 0 } , 
ff2 = {S: (Fx, Zx), (F2, Z , ) e S = » ( F i - Y2)(Z1^Z2) gO} , 
J1={S:W(Y,Z)eS3Z = N}, 
/ 2 = { S : V 3 (Y,Z)eS3Y~Z = N}t 

R~{(X9 Y,Z):Xi£X£X%t\Y\+\z\<«>}9 

J5o = {ƒ (X, F, Z) : ƒ is continuous in R}, 
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£ x = {f(X, F, Z):Y1> Y2=*f(X, F l f Z) > ƒ ( * , F2, Z ) } , 
£ 2 = { / ( X , F, Z ) : 3 constant i<31 f(X, F, Zi)-f(X, Y, Z2) | 
g * | Z i - Z 2 | } . 

3. The main theorem. Let L\ and M\ be in AC\H\C\J\ and let 
L2 and M2 be in ^4n i J 2 P\ / 2 . Let Mi be bounded above by L\; let M% be 
bounded above and to the right by L2, in the sense that there are no points 
(YM, ZM)ÇZM2 and (YL, ZL)ÇLL2 such that YM> YL and ZM>ZL. Let 
Pi be a connected set in the region of the YZ~plane bounded by Li and Mi, 
and let P 2 be a connected set in the region of the YZ-plane bounded by 
L2 and M2. Let JPiEJi , let P2GJ2 and let one of the sets Pi and P2 be 
closed. 

THEOREM. If Fa(X, Y, Z), Fb(X, Y, Z), andf(X, F, Z) are in B0, 
Fa and Fb are in Bxr\B2, and Fa(X, F, Z) >f(X, F, Z) > Fb(X, F, Z) 
for all (X, Y, Z)ER, then there is a y(X)EC2[Xu X2] such that 
y"{X)=f(X, y(X), y'{X)) for all XE[Xh X2], (y(Xi),y'(Xi))EPi 
and (y(X2), y ( Z 2 ) ) G P 2 . 

The proof, which will be given in detail elsewhere, utilizes proper
ties of solution funnels of continuous differential equations, developed 
by H. Kneser [3] and M. Fukuhara [4], and existence theorems for a 
more restricted class of boundary value problems by M. Lees [5] and 
J. W. Bebernes [6]. 

The significance of the theorem is as follows: the function 
f(X, F, Z) in the differential equation need not be locally smooth in 
Z (i.e., no Lipschitz condition is imposed), nor need ƒ(X, F, Z) be 
nondecreasing in F ; the nonlinear boundary sets Pi and P 2 are quite 
general, and in particular need not be differentiable curves. 
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