PROJECTIONS ONTO SEPARABLE C*-SUBALGEBRAS OF A W*-ALGEBRA

BY CHARLES A. AKEMANN

Communicated by R. Arens, June 28, 1967

This paper generalizes a result of Grothendieck [2] to the case of a nonabelian W^* -algebra.

THEOREM. Let M be a W^* -algebra and N a C^* -subalgebra of M which is separable in the norm topology. Then there exists a bounded projection of M onto N iff N is finite-dimensional.

PROOF. Suppose $P \colon M \to N$ is a bounded projection. If N is infinite-dimensional, by [3] it must have an infinite-dimensional abelian *subalgebra. Call it N_0 . Then N_0 is isomorphic to $C_0(X)$, the continuous functions vanishing at infinity on some locally compact Hausdorff space X. Thus, by Urysohn's Lemma, there exists a sequence $\{b_k\}$ of orthogonal, positive elements of N_0 with $||b_k|| = 1$ for all $k = 1, 2, \cdots$.

By the Hahn-Banach Theorem we may choose $\{f_k\}$ in N^* with $||f_k|| = 1$ and $f_k(b_2) = \delta_{kj}$. Since N is separable, the unit ball B of N^* is weak* sequentially compact. Thus, taking subsequences if necessary, we may assume that $\{f_k\}$ is weak* convergent.

Now $P^*: N^* \to M^*$ is weak* continuous, so $\{P^*(f_k)\}$ is weak* convergent in M^* . Also $P^*(f_k)(b_j) = f_k(b_j) = \delta_{kj}$. But $\sum_{k=1}^{\infty} (b_k)$ exists in the s-topology of M, so Theorem III.7 of [1] applies to give $\sum_{k=1}^{\infty} f_j(b_k)$ exists uniformly for $j=1, 2, \cdots$, a contradiction. Thus N is finite dimensional.

The reverse implication is well known. Q.E.D.

BIBLIOGRAPHY

- 1. C. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. (2)126 (1967), 286-302.
- 2. A. Grothendieck, Sur les applications lineaires fablement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
- 3. T. Ogasawara, Finite-dimensionality of certain Banach algebras, J. Sci. Hiroshima Univ. Ser. A. 17 (1954), 359-364.

University of Pennsylvania