ON TAUBERIAN CONDITIONS OF TYPE o

BY WERNER MEYER-KÖNIG AND HUBERT TIETZ

Communicated by Maurice Heins, June 6, 1967

The series $\sum a_n$ (\sum means $\sum_{n=0}^{\infty}$) is said to be summable to the sum *s* by Abel's method of summability, if $\sum a_n x^n = f(x)$ is convergent for 0 < x < 1 and if $f(x) \rightarrow s$ as $x \rightarrow 1^-$ (*x* real). A classical theorem of A. Tauber [2] states that if $\sum a_n$ is summable to the sum *s* by Abel's method and if

(1)
$$a_n = o(1/n) \text{ as } n \to \infty$$

then $\sum a_n = s$. In today's language we put this in the following way: (1) is a Tauberian condition for Abel's method (cf., e.g., Hardy [1, pp. 149-152]). Again according to Tauber [2] the weaker condition

(2)
$$\delta_n = o(1)$$
 with $\delta_n = (n+1)^{-1} \sum_{k=0}^n k a_k$

is also a Tauberian condition for Abel's method.

We shall show that Tauber's passage from (1) to (2) is possible for a very general class of summability methods. Formula (3) which yields this passage was already used by Tauber [2, p. 276, (6)]; here we exploit it more fully.

The summability method V is said to be regular if $\sum a_n = s$ implies V- $\sum a_n = s$. V is called additive if

$$V-\sum a_n = s,$$
 $V-\sum b_n = t$ implies $V-\sum (a_n + b_n) = s + t.$

THEOREM. If (1) is a Tauberian condition for the regular and additive method V then also (2) is a Tauberian condition for V.

PROOF. We assume that (1) is a Tauberian condition for V and that we have under consideration a given series $\sum a_n$ which is summable V to the sum s and for which (2) is fulfilled. We have to show that $\sum a_n = s$. Putting $b_0 = a_0$ and $b_n = \delta_n/n$ $(n = 1, 2, \cdots)$ the equation

(3)
$$a_0 + \cdots + a_n = (b_0 + \cdots + b_n) + \delta_n$$
 $(n = 0, 1, \cdots)$

is easily proved by induction. Together with $V - \sum a_n = s$ and $V - \lim(-\delta n) = 0$, (3) gives $V - \sum b_n = s$. Since $b_n = o(1/n)$ we conclude that $\sum b_n = s$ and further, again from (3), that $\sum a_n = s$.

If, a sequence λ being given $(\lambda_{n-1} < \lambda_n \rightarrow \infty \text{ as } n \rightarrow \infty)$, (1) is replaced by

(1a)
$$a_n = o(1/\lambda_n) \text{ as } n \to \infty$$

and (2) by

(2a)
$$(n+1)^{-1}(\lambda_0 a_0 + \cdots + \lambda_n a_n) = o(1),$$

the theorem is still true provided that

$$n/\lambda_n = O(1)$$
 and $n(\lambda_{n+1} - \lambda_n)/\lambda_{n+1} = O(1)$.

Herewith the cases

$$\lambda_n = n \log n, \qquad \lambda_n = n \log n \log \log n, \cdots$$

are covered. The theorem fails to remain true if $n/\lambda_n \rightarrow \infty$. A paper investigating these questions and similar ones is under preparation.

References

1. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.

2. A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. Math. Phys. 8 (1897), 273-277.

TECHNISCHE HOCHSCHULE STUTTGART, WEST GERMANY