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Let S2 be an open set in Cn and let p be a nonnegative function 
defined in 0. We shall denote by AP(Q) the set of all analytic functions 
ƒ in 0 such that for some constants C\ and & 

(1) | / ( s ) | âCxexp(Crf(«)), « G O . 

I t is obvious that AP(Q.) is a ring. We wish to determine when it is 
generated by a given finite set of elements ƒ1, • • • , /AT. There is an 
obvious necessary condition, for if jfi, • • • , fN are generators for 
Ap(Ù) we can in particular find gi, • • • , gN&Ap(Q) so that 1 = ^fjgj. 
Hence we have 

1 S S \Mz)\deTp(C%p(z)) 

for some constants Ci and C2, that is, 

(2) I Ms) I + • • • + I M s ) I ê ci exp(-*tf(*)) f 2 G 0, 

for some positive constants C\ and £2. 
This note concerns the converse statement. Carleson [ l ] has 

proved a deep result of that type, called the Corona Theorem, which 
states that (2) implies that ƒ1, • • • , ƒ # generate AP(Ù) if p = 0 and Ö 
is the unit disc in C. In a recent research announcement [5] in this 
Bulletin, the Corona Theorem was used to prove the analogous result 
when p(z) = | z\ and £2 = C. However, we shall see here that this state
ment is much more elementary than the Corona Theorem; indeed, 
we shall prove a general result of this kind for functions of several 
complex variables although no analogue of the Corona Theorem is 
known there. 

THEOREM 1. Let p be a plurisubharmonic function in the open set 
QCC n such that 

(i) all polynomials belong to AP(Q) ; 
(ii) there exist constants Ki, • • • , K± such that sGQ and |s--f | 

^ e x p ( - J K ^ ( * ) -2£2)=tf GO and p(Ç)£Kzp(z)+Ki. 
Then fu • • • , /jvG^p(0) generate Ap(Q) if and only if (2) is valid. 

Before the proof we make a few remarks. First note that if d{z) 
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denotes the distance from 3<GQ to Cü then (ii) implies that d(z) 
è e x p ( —Kip(z)— K2), that is, 

P(z) à (log l/d(z) - K2)/Kx. 

Hence p(z)—> <x> if z converges to a boundary point of 0, so 0 is pseudo-
convex and therefore a domain of holomorphy (cf. [3, Theorem 
4.2.8]). On the other hand, if 0 is a domain of holomorphy it follows 
that p(z)= log l/d(z) is plurisubharmonic, and (ii) is valid with 
Ki~Kz = l and suitable K2, K±. Another example is obtained by 
taking p{z) = £ } | zj\ p, 0 = O , where p is any positive number. When 
n — 1 this yields the results announced in [S]. However, the Corona 
Theorem is not contained in Theorem 1 but will be discussed at the 
end of the note. 

We know already that (2) is a necessary condition for/i , • • • , fN 

to be generators. To prove the sufficiency we shall apply a standard 
homological argument (cf. e.g. Malgrange [ó]) but first a few lemmas 
are required. 

LEMMA 2. IffÇ±Ap(Q) it follows that df/dZjEA9(Q). 

PROOF. From (1) and (ii) we obtain 

| /(f) I g G exp(Ca(lTtf CO + K*)) if | f - * | £ e x p ( - Kxp(z) - K2). 

Hence 

I df(z)/dzj\ g d exv(C2(Kzp(z) + K,) + Kxp{z) + K2). 

Since we shall use d cohomology with bounds in L2 norms, we also 
note that the definition of Ap(ti) can be expressed in terms of such 
norms. 

LEMMA 3. If f is analytic in Q, then f^Ap(Q) if and only if for 
some K 

(3) ƒ \f\*<r***ik< oo, 

where dk denotes the Lebesgue measure. 

PROOF. If (1) is valid we obtain (3) since (1 +1 z\ )2n+1^Bi exp B2p{z) 
in view of (i). On the other hand, it follows from (3) and (ii) that the 
mean value of | / | Over the ball {f; | f — z\ ^exp( — Kip(z)--K2)} is 
bounded by C exp(K(KBp(z)+Ki) + 2n(Kip(z)+K2)). Since this is 
also a bound for | /0s) | , the lemma is proved. 
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LEMMA 4. Let g be a form of type (0, r+1) in O with locally square 
integrable coefficients and dg = 0, and let $ be a plurisubharmonic func
tion in Q such that 

f | g\H~*d\ < oo. 

If r^O it follows that there is a form ƒ of type (0, r) with df~g and 

(4) ƒ | ƒ | V+( l + | z 12)-2<Z\ â ƒ U12e~*d\. 

The norms here are defined as in §4.1 of [3]. The lemma follows 
from Theorem 2.2.1' in [2] by the argument used in [3] to derive 
Theorem 4.4.2 from Theorem 4.4.1. 

For nonnegative integers s and r we shall denote by L\ the set of 
all differential forms h of type (0, r) with values in A*CN, such that 
for some K 

f | h\*e~*KH\ < oo. 

In other words, for each multi-index I~(ii, • • • , iB) of length 
| l\ ~s with indices between 1 and N inclusively, h has a component 
hi which is a differential form of type (0, r) such that hi is skew sym
metric in I and 

f | hi\2e~2K*d\ < oo. 

The 5 operator defines an unbounded map from Ls
r to Ls

r+1; its domain 
consists of all h^Ls

r such that dh, defined in the sense of distribution 
theory with d acting on each component hi is an element of Ls

r+V 

Furthermore, the interior product Pf by (/i, • • • , ƒ#) maps L8
r
+1 

into ! • : If h&L8*1 then 

l 

We define PfL% = 0. Clearly Pj = 0 and P / commutes with d since ƒ,• 
are analytic, so we have a double complex. 

LEMMA 5. JTA^ equation dg — h has a solution g(~L8
rfor every h<EL*r+i 

with dh = 0. 

PROOF. In view of (i) this is an immediate consequence of Lemma 4. 
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LEMMA 6. If gGL'r and Pfg~0, we can find fe£L*+1 such that 
g— Pfh and in addition dhÇ:Ls

r%\ if dg = 0. 

PROOF. We can take for h essentially the exterior product of g by 
7 / | / | 2 . More precisely, we set when | / | = 5 + 1 

«+i 

1 

where Ij denotes the multi-index 1= (ii, • • • , is+i) with the index ij 
removed. I t follows from (2) that &£Z£ + \ and since P/g = 0 it is 
obvious that Pfh = g. If <9g = 0 we can compute dhi by operating on the 
factor fij/\f\2 alone, so it follows from (2) and Lemma 2 that 

dheKtl 
I t is now easy to prove the following theorem which in view of 

Lemma 3 contains Theorem 1 f or r = s = 0. (Actually Theorems 1 and 
7 are equivalent.) 

THEOREM 7. For every gÇzLr with dg = Pfg-0 one can find hGLs
r+

l 

so that dh = 0 and Pfh = g. 

PROOF. The theorem is trivially valid when r>n or s>N. In the 
proof we may therefore assume that it has already been established 
for larger values of r and s. By Lemma 6 we can find A ' £ I 4 + l so that 

Pfh' = ft dh' E L9X\. 

Since ddh' = 0 and P/dh'= dPfh'=dg == 0, it follows from the inductive 
hypothesis that one can find h"ÇzL*r%l such that 

Pfh" = dV, dh" = 0. 

By Lemma 5 we canfind h"'ELp2 so that dh'" = h". Hh = h'-Pfh'" 
we conclude that dh = dh' ~Pfdh'" = dh' -Pfh" = 0, and that Pfh 
= Pfh' = g. The proof is complete. 

We shall end this note by showing how the proofs of Carleson [l ] 
can be adapted to the conventional pattern used in the proof of 
Theorem 1. This does not remove the main difficulties but it does 
eliminate a tricky argument due to D. J. Newman, which was used 
in [ l ] in the case of more than 2 generators. In the proof of Theorem 
1 the main points were the existence theorems for the operators d 
and Pf given in Lemmas 5 and 6. The proof of the Corona Theorem 
requires a more precise version of both. 

From now on Q will denote the unit disc in C. (All the arguments are 
valid for any bounded open set in C with a C2 boundary.) If /x is a 



1967] GENERATORS FOR SOME RINGS 947 

bounded measure in 0 and </> is an integrable function on ÔQ, we shall 
say that a distribution in Î2 satisfying the Cauchy-Riemann equation 

(5) du/dz = M in Ü 

has boundary values <f> on 3Q provided that there exists a distribution 
U with support in S such that U=u in Q and 

(6) dt f /ds = iu - <fcfc/2i. 

Here <£ds is of course a measure on d£2, and /* is extended so that there 
is no mass in the complement of 0. If u = 0 it follows from (6) that 
Z7=0, for dU/dz would otherwise be a distribution with support on 
ÔŒ with positive transversal order. Hence u determines both /1, <j> and 
U uniquely, so it is legitimate for us to say that <j> is the boundary 
value of u. 

If u belongs to the Hardy class Hp for some p*z 1, then <f> coincides 
a.e. with the boundary values in the usual sense, and ju = 0. Con
versely, if u is analytic and has boundary values belonging to 
L*>(dti) in the sense of (6), it follows that uÇH* ( £ è l ) . If ƒ Gif" 
and u is a solution of (5) with boundary values 0, then fu satisfies (5) 
with ix replaced by fu and has boundary values fcj>. This is obvious 
when ƒ is analytic in a neighborhood of Ü and follows in general if we 
first consider ƒ (rz) with r<l and then let r-~»l, noting that the solu
tion UÇz&'(Ô') of the equation dU/dz~F is a continuous function of 
FGS'(Ô) when it exists. 

The existence of a solution of (6) with support in Ö means precisely 
that the right hand side is orthogonal to all (entire) analytic functions. 
Thus (5) has a solution with boundary values <j> if and only if for 
entire ana ly t ic / 

f fd» = (2t)-* f 4>(*)f(*)dz. 

In view of the Hahn-Banach Theorem it follows that there exists a 
solution with boundary values of absolute value :§ C if and only if 
for entire analytic ƒ 

\ffd^cf\f(z)\\iz\/2. 

A sufficient condition for this is given by the following result of [ l ] . 
(See also [4] where an extension to several variables is given.) 

LEMMA 8. There is a constant C such that 
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(7) f | v(z) |" | <ZM(s) I S CM f | v \* \dz |, vE fl'(Ö), # > 0, 

/ör every measure fi in O swc& that 

(8) I M| {f; | f - *| < r} â Mr, 2 G ÔQ, r > 0. 

We now modify the definition of Ls
r as follows: 

hÇzLs
0 if dhi/dz is a bounded measure in £2 and &i has boundary 

values in Z,°°(d£2), j l\ —s; hÇ:L[ if hi — fxidz where in is a measure in 0 
satisfying (8), \l\ =5 . Of course we take L8

r = 0 when r > l . From 
Lemma 8 and the discussion preceding it we conclude that Lemma 5 
remains valid and that {h; h&Ll, dh==0} = iJ°°. 

Let/yGi?00 , J = 1, • • • , iV, and assume that for some c > 0 

(2)' | AW | + • • • + I M i ) I fc*. 
If we define P / by means of these functions, the proof of Lemma 6 
remains valid when s = l but breaks down when 5 = 0 since dfj/dz 
need not be a bounded function. We must therefore use another con
struction, based on the following 

LEMMA 9. For sufficiently small e > 0 one can find a partition of unity 
<f>j subordinate to the covering of £1 by the open sets Oy= {z; \fj(z)\ >e} 
such that d<t>j/dz, defined in the sense of distribution theory, is a measure 
which satisfies (8) for all j and some M. 

Admitting Lemma 9 for a moment we shall see that it implies the 
Corona Theorem. With our new definition of Lr we have already seen 
that Lemma 5 remains valid as well as Lemma 6 for r ^ O . To prove 
Lemma 6 for r = Q we need only replace fj/\f\2 in the previous proof 
by <f>j/fj where <f>3- is the partition of unity in Lemma 9. In fact, 
d(4>j/fj)/dz—fj1d<l>j/dz satisfies (8) since |/y| è e in supply. Hence the 
proof of Theorem 7 can be applied without change. For r = s = 0 we 
obtain the only interesting conclusion: 

THEOREM 10. (The Corona Theorem). If fu • • • , fN^H™ and (2)' 
is valid, it follows that fi, • • • , fN are generators for H°°. 

I t remains to discuss the proof of Lemma 9. Since the set of 
bounded functions \p with difr/dz satisfying (8) is a ring, the standard 
technique for constructing partitions of unity can be applied to 
derive Lemma 9 from 

LEMMA 11. There exists a constant k such that if (XeK^andfÇzH™, 
sup | / | ^ 1, one can find \p with Og^S* 1 so that d\{//dz satisfies (8) and 
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\p(z) = 0 when \ f(z) \ < €*, ^(s) » 1 when \ f(z) \ > 6. 

This lemma was proved in a different formulation in [l ] when ƒ is 
a Blaschke product. In fact, the main point in [l ] is a construction 
of certain curves T surrounding the zeros of a Blaschke product and 
satisfying conditions which mean precisely that the characteristic 
function \f/ of the exterior of T has the properties stated in Lemma 11. 
Since the proof given in [ l ] is applicable to arbitrary ƒ £ -ff00 and we 
have no significant simplification to contribute, we shall not carry 
out the proof here. 
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