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Let AQEm ( w ^ l ) , let B(o)QEm be convex with center of sym
metry a t 0, let n and p be integers (1 Izp^-n, w^2 ) , and let f(u) be 
an integrable function defined on A. Let An be the Cartesian product 
of A with itself n times and define YQA71 by 

F = < x = (a*, • • • , xn) : n £(*»*) 5̂  0 

for some fi, • • • , iP, 1 ^ ii < • • • < ip S n > . 

The problem of evaluating J = / r I I ï / ( ^ i ) ^ i • • * dxn generalizes a 
number of questions in probability, queuing theory, scattering, 
statistical mechanics etc., [ l ] , [2]. Put 

M = r \ sh...i, = Uxi, • • •, xn)-. n *(*0 ** 0 } >*(*) 
n 

= U / W » rf7 = rfiPi • • • ^X» 
1 

and let the M sets Six...ip be enumerated as {S*}, fe = l, • • • , M. 
Then by the inclusion-exclusion principle [2] 

(i) j = ± (-I)H-I[ E • • • Z f ^(*)^1 

say. To help us keep track of different r-tuples of ^-tuples, we intro
duce a generalization of graphs. Let X be a regular simplex in En~l 

with the vertices W\> • • • , w», a (d-dimensional) hypergraph G on 
X is just a collection of some of the (Cd+x) ^-dimensional faces of X; 
the number of vertices of X lying in G will be denoted by v(G). G is 
called a (JB, r) -hypergraph on X if it consists of r such d-faces and if 
there are some v — v(G) translates J5i, • • • , Bv of J5 such that 
any d + 1 of them, say Bi, • • • , £<*+i, intersect if the correspond
ing vertices Wi, • • • , w^+i lie in a d-face of X included in G. 

1 Permanent address: Dept. of Mathematics, University of British Columbia. 
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G is called connected if no hyperplane in En"~l strictly separates some 
of its d-faces from the rest of them. Let t~t(r, d) be the number of 
types of (topologically) distinct (B, r)-hypergraphs on X, let Gj be 
any one of the j t h type, and let M%(n) be the number of distinct 
(J3, r) -hyper graphs on X of the j t h type. Let Jo ^fjfMdu, iid—p — 1 
observe that each d-face of a (B, r)-hypergraph corresponds to ex
actly one set 5&; let 

J(G) ƒ ƒ F(x)dV 

where Skv • • • , Skr are the S-sets corresponding to the d-faces of G. 
Now we get a formula for the summand Ur of (1): 

(2) 
Hr,p-1) 

Ur= Z MP
rj\n)fo 

-v(Gj) 
n J(C(GJ)) 

where the product is taken over the connected components C(G3) 
of Gj. This generalizes some of the so-called cluster expansions of 
statistical mechanics [3]. 

In most applications it is found that A and B are simple regular 
sets (cubes, balls), B is small while A is large, and ƒ is well behaved. 
(1) and (2) allow us then, in principle a t least, to expand / in the 
powers of a parameter measuring the ratio of sizes of B to A, and to 
estimate the error of truncation. The integrals J(C(Gj)) can rarely 
be found analytically but the Monte-Carlo method lends itself very 
well to their numerical evaluation. 

The following expansions and identities for iterated binomial 
coefficients were found in the process of evaluating the numbers 
Mrj~~l(n) in (2). Let q = q,(rf d) be the smallest integer è the largest 
positive root of r = CXtd+u then 

(3) 

where 

(4) 

\d) 

r 

rd 

Air(d) 2<-0 cr) 
Equating the coefficients of like powers of n in (3) one gets 
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f /dr-jS 

9S7 

fc? /dr\ 
y-o \ j / rr) 

r^1 (dr - 1\ 

/-o \ J / Try d 

r 

- ( W [ r W L 

<*(<*r)!(r- l)/2[rl(dl)'],etc. 

Details of proofs, computations, and applications will appear else
where. 
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Introduction. This paper is concerned with nonexpanding maps 
from the unit ball of a real Hubert space into itself. Browder [ l ] has 
established that such maps always possess a t least one fixed point. 
We shall develop a method, which resembles the simple iterative 
method, for approximating fixed points of such maps. In fact, we 
shall generate a sequence, {xn}, by the recursive formula xn+i 
= kn+if(xn) where ƒ is the map in question and {kn} is a sequence of 
real numbers. Our main result is Theorem 3 which states sufficient 
conditions on kn to insure the strong convergence of xn to a fixed 
point of ƒ. 

Definitions and preliminary observations. Let H be a Hubert space 
with inner product denoted by ( , ) and norm by || ||. Let B be the 
unit ball, B={xeH\\\x\\^l}. A map ƒ: B-±B is nonexpanding if 

ll/(*W(y)ll âlk-yll for an Xl yeB. 
Assume that ƒ : B~-*B is nonexpanding. I t is not difficult to estab

lish that the set F of fixed points must be convex. Using the con-


