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1. Outline, We consider an algebra (i.e. an associative algebra or 
a Lie algebra) A and a subalgebra B. Then B} A and also A/B are 
(two-sided) 5-modules in the obvious fashion. The exact sequence of 
coefficient modules 

0-±B^A^>A/B->0 

induces on the (graded) Hochschild [resp. Eilenberg-Mac Lane] coho-
mology modules the exact triangle of homomorphisms 

H*(B, B) - >H*(B, A) 

(1) \ « * / 7T* 

H*(B, A/B) 

The product operation in B, and similarly in A, induces a graded Lie 
algebra (GLA) structure (here called the cup structure) on H*(B, B) 
and H*(B, A) (cf., e.g., Gerstenhaber [2], Nijenhuis and Richardson 
[6]), and i* is known to be a homomorphism of these structures. The 
cup structure on H*(B, B) is abelian; cf. [2]. I t is also known that 
H*(B, B) has another GLA structure (here called the comp structure) 
with respect to the reduced grading (elements of Hn(B, B) have re­
duced degree w — 1; cf. [2], [7]). The following theorem supplements 
this information. 

THEOREM. Let A be an algebra, B a subalgebra and let A/B have its 
natural structure as a B-module. Then H*(B, A/B) has a GLA structure 
{cup structure). The maps i* and 7r* in the exact triangle (1) are homo-
morphisms of cup structures. The image of i* belongs to the center of 
H*(B, A). The map ô* is a homomorphism between the cup structure of 
H*(B, A/B) and the comp structure ofH*(B, B). 

The theorem has immediate relevance for the theory of deforma­
tions. Hl{By A) is the set of infinitesimal non trivial deformations of 
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the homomorphism i; the cup product provides the obstructions to 
finite deformations (cf. Nijenhuis and Richardson [ó]). H1(Bt A/B) 
is the set of non trivial infinitesimal deformations of B as a subalgebra 
of A (cf. Richardson [8]). In a forthcoming paper we shall show that 
the cup product provides the obstructions to finite deformations. 
H2(B, B) is the set of non trivial deformations of the structure of B 
(subject only to the condition that the structure remain of the same 
type—associative or Lie), and the comp product gives the obstruc­
tions to finite deformations (cf. Gerstenhaber [3] and Nijenhuis and 
Richardson [7].) The homomorphisms i*, 7r* and 5* provide the 
natural relationships between the infinitesimal deformations of the 
various kinds and the obstructions. 

The origin of the formula (11) which defines the cup product in 
H*(B, A/B) can be found in differential geometry, where it exists as 
an operation yielding a vector form (differential form with values 
which are tangent vectors) as the product of two vector forms 
through a process of differentiation without the intervention of any 
additional structure (e.g. a connection; cf. Nijenhuis [4] and Frö-
licher and Nijenhuis [ l ]) . I t has been extensively applied to deforma­
tions of complex structures. The present result may also have impli­
cations for the cohomology of foliations, as a foliation is a subalgebra 
of the Lie algebra of vector fields. 

2. Basic formulas. Let B denote a vector space over a field k. If ƒ 
and g are cochains, i.e., elements of C*(B, B)~Homk(®B, B), of 
degrees n resp. mf the composition product ƒ ô g, of degree w + m — 1, 
is defined by 

(2) V°g^Xl' ' " ' >Xn+m~à 
n 

= Z)("-"1) (*"1 ) ( m""1 ) /(^l> • # • > *<-l> £(*<, ' " •,ff»+W-l),ff*+m, ' * -jffn+m-l). 

Although generally not associative (cf. [2]), 

(3) (fog)ôh-fB(gBh) = (~l)^^{(fïh)ïg-fï(hSg)} 

for hÇ:Cp(B, B), this product has a commutator 

(4) [ƒ, g]° = g 5 ƒ - ( - 1 ) (-i)<»-!>ƒ 5 g 

which defines a GLA structure (comp structure) on C*(J3, B), with 
respect to the reduced grading. For ixÇzC2(By B) the condition 
JLCÖJU — O ( ° r

 [M> M ] O = = 0 if chareT^2) is equivalent to /x defining an 
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associative algebra structure on B. The Hochschild coboundary 
operator on C*(J3, B) is given by 5/= — [/*, / ] ° . 

Let A be an associative algebra with product map jit, and let B be a 
subalgebra. Then every ƒ £ £ * ( £ , A) is the restriction to B of some 
(not un ique ) /EC* (4 , A). The restriction of — [/*, ƒ] to 5 depends on 

/butnotonthechoiceof7 ,andisS/ , eC*(J5 ,^) .Forevery /GC*(5 ,4 /^) 
there is a (nonunique) fÇEC*(B, A) such that 7r o / = / . Then TOO} 
depends on ƒ but not the choice of/, and is just ô /£C*(S , 4/-B). 

If/, g£C*CB, 4 ) have degrees n resp. w, t hen /Ug , of degree n+mt 

is defined by (cf. [2]) 

(S) (fV g)(xh • • • , ^n+w) = M(/(*I , • • - , « * ) , g(*n+i, * • • , *»+»))• 

As this product is associative, commutators yield a GLA structure, 
defined thus: 

(6) [/.«rwu*- (-i)-gu/. 
The operator ô acts as a derivation of degree 1 with respect to the cup 
structure on C*(B, A), hence induces the cup structure on H*(B, A). 
Also, 5 h acts as a derivation of degree p — 1. If ƒ has values in B, then 
[ƒ» g] U is expressible in terms of 5 (cf. [2]) 

= dg O f + (~l)«ô(gO/) - ( -1)»£0«/ . 

This provides a formula for ô(gôf)t and also shows that the cup 
structure on H*(B, B) is abelian. In fact, it shows the following: 

LEMMA 2.1. The image i*(H*(B, B)) belongs to the center of H*(B, A) 
with respect to the cup structure. 

A second complex, C*(J5, B) Horn* (AB, B) has a composition prod­
uct, usually called the hook product, defined by 

( . (ƒ R«)(*i, ' • • , tfn+m-i) 

9 

where the sum extends over those permutations croi {l,- - ' ,n+ni—• 1} 
for which cr(l) < • • • <a(m) and a(m + l)< - • • <a(n+m--l). Its 
properties are formally completely analogous to those of fog, e.g. 
(3) holds; we define [ƒ, g]° as in (4); M E C * C ^ > B) satisfies /JL Jfyt = 0 
(equivalent to [ju, JU]° = 0 if char k^2) if and only if ix defines a Lie 
algebra structure on B, and the Chevalley-Eilenberg coboundary is 
given by 5/= — |ju, / ] ° . The product [ƒ, g ] u is defined by 
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~ 2 Sg ff/*(/(#,<i), • • • , %<r(n)), g(%<r(n+l), • * * , 3V(n+m))) 

where the sum extends over those permutations a of {1, • • •, n+m} 
for which cr(l) < • • • <cr(n) and o"(» + l ) < • • • <cr(n+m). The 
analogue of (7) holds, too. The references in the Lie case are [ l ] , [6], 
[7]. Lemma 2.1 holds, too. 

The case when char fe = 2, or when k is a ground ring (unitary and 
commutative) in which division by 2 is not possible, needs separate 
treatment. Many details are as in [S]; we only comment on a few 
essentials. We set Q°(f) =ƒ 5 ƒ (resp. ƒ A/) for n even, and(^( / ) =fUf 
in the associative case, for n odd. In the Lie case we set (f(f) equal 
to the sum on the right in (9), with f=g, m==n odd, and with the 
extra restriction cr(l) <ar(n+l). The GLA structures thus obtained 
are then strong in the sense of [S]. The operator Q^ does not generally 
vanish on H*(B, B), however, so the cup structure on H*(B, B) is not 
abelian in the strong sense. This is not surprising in view of the fact 
that Q^if) =Sq (ƒ) when char £ = 2 (cf. [3]). 

3. Proof of the theorem. Lemma 2.1 proves the statement on the 
image of i*. The statements of Lemmas 3.1-4 show the existence of 
a GLA ("cup") structure on H*(B, A/B). The homomorphism prop­
erties of i* and 7r* are obvious from (11) ; the homomorphism property 
of ô* is obvious from Lemma 3.4. All statements depend on the formal 
properties of §2 and are made only for the associative case. In all 
cases A is an algebra, B a subalgebra ; n = deg ƒ and m = deg g. 

LEMMA 3.1. Let A be an algebra. Then 

(io) [ƒ,g] - [ƒ, g]» + (~Dng°ôf + (-i)««^+yo«g 

defines a GLA structure on C*(A, A). [When char fe==2, set Q(f) 
— (f(f) """ƒ ô 5/for n odd and get a strong GLA structure. ] 

PROOF. By tedious computation : as this lemma is not used in the 
following ones, the identities derived there (with B=A) may be used, 
in addition to those in §2. See also [9] for some further details on the 
operation (10). 

LEMMA 3.2 Let ƒ, gEC*(B, A/B); let ô /=0, 5g = 0, and let J, g 
GC*(.B, A) be such that f=w of; g — ir o g. Then S/, ôg have values in 
B, and 
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(H) [ƒ, I] == [ƒ, II" + (-l)WfÔS/ + (-l)™+-H/5$g 

belongs to C*(B, A) and its projection (by left-composition with T) on 
C*(B, A/B) depends on}, g (given f, g) by no more than a coboundary. 

PROOF. Any two choices of ƒ differ by an element <j> of Cn(B, B). 
Hence, by (7) 

[ƒ + #,«] - M = [«, f]w + ( - l ) w gô50+ (-l^+^ôôg 
» Ô | Ô 0 + (-i)w5(|o0) + ( - i )*- i |oa^ 

+ (— l)ngôô<j>+ (—l)wn+w+10Ôôg, 

Two terms cancel; left composition with T reduces the result to 
(~l)»ö(gö0). 

LEMMA 3.3. Z,^ ƒ, g, J, | &e as in Lemma 3.2, awd let hE:Cn''l(B1 A) 
be such that bh =ƒ. Then TO [/,g]wö coboundary in C*(Bt A/B). 

PROOF. By computation 

\J,g] = [^ , f] u + ( ~ l ) n g ô ^ - (—l)^n+m^5ôg 

= ô[h,g]^ - (- l)"-1[Mg]v ' - (~l)M W +^55g 

= àihyg]^ + (~l)mn+m{ôhodg + (-l^ôtfôôg) 

+ (-~l)m+1hoôÔg} - (-l)mn+m8hôôg. 

Two terms cancel, one is zero, and the rest are coboundaries. Left-
composition with T yields coboundaries in C*(B, A/B). 

LEMMA 3.4. Let ƒ, g, ƒ, g be as in Lemma 3.2; then 

(12) H[f, g] = [ôf, Ôg]° E C*(B, B). 

PROOF. By computation : 

S['f,i] = a[j,i\^+(-l)"B(gÖ5j) + (-l)^+^S(fo8g) 

= ô[/ ,f]- + (- l)"{(-l)»+1[5j ,g]-+ (-l)»SgÔ5/+g555/} 

+ (-l)mn+m+1{(-l)m+1[5gj]u + (-DmÔfÔ5g +Jôôdg} 

= 3[7,l]" - W,i\u ~ (-l)B[/ ,Sg]u + «Iôô7+ ( - l ^ + ' S / S s i 

= W, 5g]°. 
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1. Introduction. Let Che a rectifiable Jordan curve, D its interior. 
A sequence of polynomials Pn(z) is said to converge boundedly to a 
function f(z) in D, or equivalently, f(z) is said to be boundedly ap­
proximated by the polynomials Pn(z) in D, if sup{ |P n0s) | : zÇzD) 
is bounded as a function of n, and \Pn{z)} converges tof(z) through­
out D. I t is known [ l ] , [ó] that f(z) can be boundedly approximated 
by polynomials in D if and only if f(z) is a bounded holomorphic 
function in D. In this paper we consider the more delicate bounded 
approximation problem in which the zeros of the polynomials are 
required to lie on the boundary C. Polynomials whose zeros lie on C 
are called C-polynomials, 

A different kind of appproximation by C-polynomials was studied 
by G. R. MacLane [5]. He proved that if ƒ (z) is holomorphic and zero 
free in D, then there exists a sequence of C-polynomials which con­
verges to f(z) uniformly on every compact subset of D. This result 
was later extended by J. Korevaar [3] and his students [4] to more 
general sets D. 

1 This is an announcement of the author's doctoral thesis at the University of 
Wisconsin written under the direction of Professor Jacob Korevaar. The author wishes 
to acknowledge partial support from National Science Foundation grant GP-4106. 


