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ON SELF DUAL L C A GROUPS 

BY M. RAJAGOPALAN1 AND T. SOUNDARARAJAN 

Communicated by Maurice Heins, May 29, 1967 
DEFINITION 1.1. Let G be a locally compact Hausdorff Abelian 

group with a character group G*. (Hereafter we shall call such groups 
G as L C A groups.) G is called self dual if there is a topological 
isomorphism T: G*—>G from G onto G*. Some examples of self dual 
groups are known in literature, but the structure of all such groups 
is an open problem (see page 423 of [ l]) . In this note we announce 
the structure of those self dual groups which are torsion free as ab­
stract Abelian groups. We state some definitions before announcing 
the main theorem. The complete details will appear elsewhere. 

DEFINITION 1.2. Let / be an index set. Let Ga be an L C A group for 
each « G / . Let Ha(ZGa be a compact, open subgroup of G« for every 
aÇzJ. By the local direct sum G of the groups Ga modulo Ha, we mean 
the subgroup of H a e j ^« consisting of those elements for which all 
but a finite number of coordinates lie in Ha. Notice that H= JJ_aej Ha 

is contained in G. We topologise G in such a way that H is declared to 
be open in G, and the relative topology on H as a subspace of G coin­
cides with the product topology of the spaces Ha where Ha is given 
the relative topology from Ga. We write G = ]C<*ej Ga. With this 
definition G is also an L C A group. 

DEFINITION 1.3. Let p be a prime integer > 0 . Then Jp denotes the 
field of p-adic numbers with usual addition and topology. With this 
addition and topology, Jp is a locally compact Abelian group. Any 
compact, open subgroup Hp of Jp is called £-adic integers. A local 
direct sum ]C«ex Ga of the L C A groups Ga is called a canonical p-
group if each Ga, where ce£X, is isomorphic to p-adic numbers and, in 
each Ga, some compact open subgroup is fixed in advance. 
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THEOREM. Let G be a torsion free Abelian group. Let it further be a 
locally compact group in some topology. Then G is self dual if and only 
if G is the direct product RnXDXD*XH, where Rn is the real n-dimen-
sional Euclidean space (n è 0) and D is a discrete, torsion free divisible 
group and D* is its dual and H is the local direct sum ^2pe$ Gp of 
canonical p-groups Gp and 3 is a collection of primes. 
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