MULTIPARAMETER SPECTRAL THEORY
BY F. V. ATKINSON

1. Introduction. On an occasion calling for a topic of general mathe-
matical interest, I owe my audience some explanation for having
chosen one of the less known areas of analysis as my subject today.
The idea of considering eigenvalue problems with several parameters
occurs quite naturally in certain boundary-value problems, in par-
ticular those which lead to the Mathieu functions; the area in ques-
tion is thus not unknown to the applied mathematician or the special-
ist in the “special functions of analysis.” However, the exploitation of
this area in the spirit of classical analysis, in particular for ordinary
differential equations, has reached no more than a preliminary stage.
The same is true when we examine this area in the spirit of linear al-
gebra or again of functional analysis. It is when we look at this area
in a more abstract way that another justification appears for recom-
mending it as worthy of general interest. The formal theory of eigen-
value problems with several parameters makes extensive use of al-
gebraic ideas which, though not new, have gained great vogue in
recent years.

The spectral theory of linear operators has tended to be concen-
trated to an overwhelming degree on the study of endomorphisms,
vis-3-vis the identity. In what I shall refer to as the standard case,
one has a linear space G, usually over the complex field, and a linear
operator 4 on G into itself. In the spectrum, we study the nature of
the linear combination 4 —\I, where [ is the identity, and A a com-
plex scalar. This has, of course, been the subject of an enormous
literature and has applications too numerous to mention.

Here I am concerned with two generalisations, neither particularly
new, but only now beginning to claim their due share of attention.
In one of these we allow nonlinear dependence on the scalar param-
eter, in particular, polynomial or rational dependence. In the matrix
context, this is the topic of A-matrices (see e.g. [67]). For the differ-
ential equations context, there is early work of R. E. Langer [64],
[65] and a good deal of more recent work [1], [35], [58], [60], [63],
[73]. In the operator context, work of a more spectral character
includes [60], [63], [68], [73].

The second generalisation is that in which we introduce several
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parameters, and several operator functions of them, rather than a
single linear function. It is this that properly deserves the term
“multiparameter.” Work in this area has naturally concentrated on
the case of linear parameter dependence and will be briefly surveyed
in §3. It is appropriate to take these two generalisations together. For
one thing, the two generalisations of the standard case can be com-
bined, as when we consider several operators dependent polynomi-
ally on several parameters. For another, they both raise difficulties
in connection with the algebraic manipulation of operators, in par-
ticular, in connection with the formulation of the functional calculus.

2. The linear multiparameter case. I first recall a preliminary gen-
eralisation, in which the standard case appears as a specialisation
from the theory of “pencils.” In the latter, one has a pair of linear
spaces G, H, both over the same field K, and a pair of linear operators
A, B:G—H. Here spectral theory is concerned with the behaviour of
AN+ By, for varying scalar \, u, not both zero; however even in the
matrix case, other concepts are also relevant. Here the standard case
is recovered if we choose G=H, B=—1I. More generally, we have
essentially the standard case if some linear combination of 4, B is an
isomorphism, which of course need not always be so. For the finite-
dimensional case one may cite [40], [42], [61], [88], and more gen-
erally the recent works [3], [¢], [39], [57].

As a generalisation of the topic of pencils, and so also of the stan-
dard case, we propound the multiparameter linear eigenvalue prob-
lem. For some k=1, we suppose given % pairs of linear spaces G,, H,,
r=1, . . -, k. Also given is an array of k(k+1) linear operators

AIO cee Allc

2.1)
Aro -+ -+ A,

where the operators in any one row have the same action, namely,
(2.2 Ay 2 Go— H,, r=1,---,k s=0,---,k

Of course, we get the case of a pencil if k=1.

The pure mathematician, in the absence of prior motivation, will
naturally ask whether any problems can be posed for this situation.
In particular, since the operators in different rows of the array (2.1)
have quite separate actions, one wonders whether they can sensibly
be made the ingredients of any unified problem at all. There are at
least two answers to this.
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In the first, more superficial problem, no additional machinery is
needed. In what may be called the linked eigenvalue problem, we set
up the k linear combinations

k
(2.3) DAy, r=1,--- k.
8=0

Here the A, are scalars, not all zero; it is often convenient to adopt a
homogeneous or projective notation for the scalar parameters. It is
then natural to define an eigenvalue as a (k-+1)-tuple Ao, + « -, Az of
scalars, not all zero, such that all & of the linear operators (2.3) are
singular in the sense of having nonzero kernels. Addicts of index
theory would ask also whether these operators had nonzero cokernels,
and so on, but let us pass over these ramifications. One emerges with
a preliminary notion of the spectrum of the array (2.1) as a collection
of (projectively considered) scalar (k-+1)-tuples.

However, we obviously cannot stop short at a definition of eigen-
values and ancillary notions. One will ask whet the eigenvectors are
and whether they have any completeness properties. Here we are
constrained to the first of many algebraic constructions. We must
consider the tensor product

On this space, the operators (2.1) will induce maps into % other
spaces, namely,

(2.5) H®G® - QG ,G1® - Q Gr1 @ H.

At the moment we leave open the question of whether we are using
the algebraic tensor product or some completion thereof but assume
that the tensor product has certain natural properties (validity of the
Kiinneth tensor formula) [46], [48], [66], [72].

Let now A/, denote the operator induced by A4,, acting from (2.4)
to the rth space in (2.5). We may formally extend our idea of an
eigenvalue by saying that it is a nonzero (+1)-tuple o, « « +, Ny such
that the k operators

LA
(2.6) DAy, r=1,---.k,
8=0

have kernels with a common, nonzero intersection; there must be a
gEG, g#=0, annihilated by all of (2.6). This will be generated by ten-
sor products of the separate kernels of (2.3), though here we touch on
more delicate matters. We claim that elements of the common ker-
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nel of (2.6) provide a natural notion of an eigenvector and that com-
pleteness properties of eigenvectors are to be sought in the tensor
product space (2.4), if at all.

It is sometimes asked whether we cannot combine the separate
operator-expressions within the simpler context of a direct sum (as
for example in [2], [34]) rather than in the more abstruse tensor
product. A crude indication that the latter is appropriate to the
problems under consideration is given by finite-dimensional situa-
tions.

Let in fact
2.7 dim G, = dim H, < «, r=1,---,k,
and let the field be algebraically closed and of characteristic zero. By
choosing bases in G,, H,, r=1, - - -, k, we may attach a sense, as

polynomials, to the determinants

k
(2.8) det X A, r=1,--- k.

=0
An eigenvalue, whether for (2.3) or (2.6), will be a common nontrivial
zero of these polynomials. In general [89], there will be [ dim G,
of these, so that we should get this number of eigenvectors. One then
notices that this happens to be the dimension of the tensor product
(2.4), so that we have at least the correct number of eigenvectors,
apart from degenerate cases. Against this, the dimension of the direct
sum is the sum Y dim G,.

In the ultra-trivial one-dimensional case, an eigenvalue is a simulta-
neous zero of the linear functions (2.3). In general, there will be
essentially one zero, and the eigenvector is just a basis vector in the
one-dimensional tensor product.

The general finite-dimensional case, under assumptions of a hermi-
tian character, was considered in [9]. I refer later to work of Car-
michael on this topic.

3. Some history. In the standard case it is surely right to view
eigenvalue problems for differential equations as second only to eigen-
value problems for matrices in general importance and of primary
importance in the inspiration of deeper developments. In the multi-
parameter case, the matrix and differential equation problems them-
selves stand in need of much development but will no doubt in time
provide useful inspiration for more abstract settings of such problems.

However, in the differential equation setting multiparameter prob-
lems do have an antiquity not far short of Sturm-Liouville theory
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itself. Let us formulate the multiparameter analogue of the classical
Sturm-Liouville problem. We seek % functions y,(x,), ¢, S %, < b,, satis-
fying k second-order differential equations

k

3.1) ! (x) + ( Z Aaprc(xr) + Qr(xr)) ¥e() = 0;
&=1

here we have reverted to inhomogeneous spectral parameters. For

the boundary problem, we are to determine the A4, - - - , A\; such that

all equations (3.1) have nontrivial solutions satisfying boundary

conditions of the usual type; for simplicity, we suppose these to be

(3.2) ye(ar) = yr(br) = 0, r=1,---,k

This problem is discussed in the book of Ince [55] (see also [16]-
[18], [25], [50], [51], [59], [79], [93]-[94]). In addition to the p,., ¢,
being real-valued and well-behaved, let there hold (as in the standard
case) the definiteness assumption

(3.3  det {pn(@)}rm>0, @S Sb, r=1,---,5

Then all eigenvalues (inhomogeneous k-tuples) are real. As in
Sturm’s oscillation theorem, one has now “Klein’s oscillation theo-
rem” according to which an eigenvalue can be chosen uniquely so as
to make the y,(x,) have assigned numbers of zeros in a,<x,<b,.

So far we have discussed the “linked eigenvalue problem’ for
(3.1-3.2). In order to get eigenfunctions with possible completeness
properties we must form products [] y.(x,) of eigenfunctions of the
separate problems. In this way each eigenvalue yields a function of
X1, * - -, %% This is, of course, a tensor product construction. We then
consider the completeness of these products in suitable spaces of
functions of the x, in the box ¢, <x,=<b,,r=1, - - - , k. The case k=2
was discussed by Hilbert (5.1), who is also largely responsible for the
algebraic machinery to be introduced later. The general case has
been considered by Faierman [37].

The situation (3.1), with boundary conditions of the type (3.2) or
other types, arises in the separation of variables technique for partial
differential equations and so by a reversal of the tensor product con-
struction. In the simplest case, such as that of the oscillations of a
rectangular membrane with fixed boundary, we are led to two sepa-
rate Sturm-Liouville problems, which are separate not only as re-
gards their independent variables but also in regard to the spectral
parameters as well; we have a sort of diagonal situation. In the next
most simple case, exemplified by the case of a circular membrane, we
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have mild parametric coupling or a triangular situation. The param-
eter in the angular equation must be adjusted for periodicity and the
resulting values substituted in the radial equation leading to various
Bessel functions. We get the multiparameter situation in full force
in the case of an elliptic membrane; here the separated equations
both contain the same two parameters. It is natural that the theory
of Mathieu, Lamé and allied functions has provided a continuing
thread, if not the only one, in the topic of multiparameter problems
[6], [7], [36], [69], [84], [91].

There are many variations on (3.1-3.2). Two-point boundary con-
ditions can be used; periodic conditions are important for the Mathieu
functions. It would be of interest to consider cases in which some or
all of the intervals (a,, b,) are infinite or otherwise “singular.” If how-
ever these intervals are all finite, we may locate them on the same
x-axis and consider that we are dealing with a single differential
equation containing k2 parameters and defined on % nonoverlapping
intervals on the x-axis. Ince [55] does this. An interesting case is that
of a single differential equation of the second order containing %
parameters, defined in a single interval, for which we demand that
there exist a nontrivial solution which vanishes at 2+1 assigned
points of the interval. The case k=1 is the usual one. The case k=2
is a nontrivial extension considered by Arscott [5].

In a modification of Sturm-Liouville theory of importance for the
special functions such as the Legendre polynomials, we have an al-
gebraic differential equation with singularities; instead of boundary
conditions of the standard type, we ask that the solution behave in
polynomial or related fashion at the singularities. Such problems can
lEe 1iosed with several parameters and singularities [36], [59], [90],

91].

In a related area is the finite-difference analogue of Sturm-Liouville
theory, which is manifested in the three-term recurrence relation for
orthogonal polynomials. For the multiparameter extension and its
connection with orthogonal polynomials in several variables, I refer
to [8], [11]. There is an application of completeness in this discrete
case to the proof of completeness in the continuous case [37]. The
completeness in the discrete case, when considered over a finite range,
may be considered as a special case of the matrix problem [9].

Leaving now the Sturm-Liouville area, one may remark that just
about any spectral problem involving a single parameter will have
nontrivial extensions involving several parameters and a correspond-
ing number of eigenvalue problems. Indeed, we can couple together,
by means of spectral parameters, eigenvalue problems of quite differ-
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ent kinds. It was indicated by R. D. Carmichael [23]-[25] that there
is here a vast area awaiting investigation; Carmichael also recognised
the matrix problem and suggested a possible line of attack on it.

For specific work of this kind, one may mention that of A. J. Pell
[78] on pairs of Fredholm integral equations, coupled by a pair of
parameters. First-order partial differential equations were considered
in [21], [22], [32].

As already mentioned, multi-parameter problems in the full sense
arise when we separate the variables in a partial differential equation,
without at the same time managing to separate the spectral param-
eters. Even when we do manage to separate the parameters as well as
the variables, there is still something left to discuss. Namely, we have
the problem of whether the eigenfunctions obtained by separating
the variables form a complete set. In abstract terms, we are concerned
with whether the spectral resolution of the Kronecker sum (or
product) of a pair of operators is given in the natural way in terms of
their separate spectral resolutions (for the matrix case see [13]). For
related work see [14], [15], [20], [26], [29], [30], [41]. We are in
this case concerned with partially diagonal cases of (2.1).

In yet another ramification, not to be considered here, we are con-
cerned with skew-symmetric products, determinants in Banach
spaces, and the like. These arise from special symmetric forms of
(2.1) in which all the spaces are the same [56], [82], [85].

4. Algebraic aspects. The topic of eigenvalues, eigenfunctions and
their completeness, as applied to the immense variety of special
multiparameter eigenvalue problems, provides an endless field for
investigation. To give only one quite natural example, the detailed
behaviour of eigenvalues and eigenfunctions in the multiparameter
Sturm-Liouville case is still far from clear. Tempting as is this area
for a classical analyst, I would nevertheless like to speak of other
matters today, namely the rounding out of the algebraic formalism.

I recall that in the standard case of an endomorphism 4, an im-
portant part is played by a rather simple device, namely the forma-
tion of polynomials in 4 with scalar coefficients; more generally, we
can also form rational functions of 4. Three areas of application of
this device may be noted.

In the first, one notes that the polynomials in 4 form a commuta-
tive algebra of endomorphisms. Under normed conditions this leads
to the construction of Banach algebras [74], [80], and, under more
special conditions, to symmetric algebras and proofs of spectral
resolutions [74]. Again, polynomials in the endomorphism can be
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used to give quite elementary proofs of spectral resolutions in Hilbert
space. Yet another application of polynomials is to construct by
limiting processes a natural interpretation for more general functions
of an endomorphism, as in spectral mapping theorems.

The second application of polynomials in an endomorphism is even
more basic, though it may be disregarded in many important cases.
I refer here to the ideas of root-spaces, adjoined or principal vectors
or of the rank of an eigenvalue. Even in the matrix case we must con-
sider not only the eigensubspace, that is to say the kernel of 4 —\I
for an eigenvalue \, but also the kernels of (4 —\I)*, =1, whose
union forms the root-space; generally, these play an essential role in
expansions associated with nonselfadjoint operators [1], [35], [44],
[58], [73]. These root-spaces and associated quantities present in-
terest also in themselves, even when we have little hope of establish-
ing completeness properties, and merely wish to clarify the pointwise
and local behaviour of 4 —\I and its inverse [43], [57], [86], [87].
The relevant point at the moment is that this idea of a root-space does
not have an immediately obvious extension to the array (2.1), or even
to the pencil

“.1) AN + By.

The “operator-bundle”

(4.2) > ANy
r=0

presents similar difficulties.

I have mentioned that in certain cases one may reduce (4.1) to
the standard case. The same is true of (4.2) which, again under cer-
tain restrictions, may be replaced by a problem linear in the param-
ters, but posed in a direct sum space, namely the direct sum of »
copies of the original one [44], [70] much as an nth order ordinary
differential equation is reduced to a 1st order system. However, even
when this reduction to the standard case is possible, it is perhaps also
useful to have a formalism which avoids preliminary transformations.

I come now to the third field of application of polynomials, in which
it may not be apparent that polynomials are actually involved. I refer
here to the topic of products, orthogonality and biorthogonality. For
an endomorphism A4 there holds a biorthogonality between eigen-
vectors in the given space and those in the dual or conjugate space
when these are associated with distinct eigenvalues. In Hilbert space,
for a symmetric endomorphism, this leads to an orthogonality be-
tween eigenvectors in the given space associated with distinct eigen-
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values. It should now be indicated that this same orthogonality or
biorthogonality, as the case may be, also holds when we insert in the
product the endomorphism 4, or for that matter any polynomial in
A. In this standard case, we naturally tend to emphasise the special
inner or scalar product associated with the identity endomorphism;
this is particularly so in Hilbert space, where this scalar product is
used to define the topology and to select the class of symmetric
operators or principal interest.

For (4.1), to take only the simplest case, we do not have an identity
operator or a distinguished product. Nevertheless, there holds a
rather obvious biorthogonality. If 4, B:G—H, then both of 4, B,
as also any linear combination, gives a product between elements of
G and of H*. Furthermore, if (AN+Bu)g=0, r*(AN:+Bus) =0,
Aiptz %Ny, then B*4g=h*Bg=0, so that we have a whole family of
biorthogonalities.

In specialising the latter in the hermitian direction, we do not need
to assume that 4, B are endomorphisms of a Hilbert space. Let us
assume rather that, with the complex field, we have conjugate linear
maps ¢: G—H*,y: H-G*,such that, for g&G,hEH, ¢(g)h= Y (h)g)~.
By saying that A4 is formally symmetric we are now asserting com-
mutativity in the diagram

y|
G — H
(4.3) ¢l y vl

H*— G*

where A has been used to denote the induced map H*—G*. Then 4
defines a real-valued quadratic form ¢(g)4dg=y¥(4g)g on G as will B
if the analogue of (4.3) holds. There is no place here for a uniquely
favoured quadratic form or metric, definite or otherwise.

The principal step in setting up the corresponding machinery for
such cases as (2.1), (4.1-4.2) lies in studying maps induced by the
expressions concerned on modules over polynomial rings. Thus, to
take (2.1), we should not immediately pass to the expressions (2.3)
or (2.6), considered as operator-valued functions of scalar variables.
Instead, we replace the scalars A, by indeterminates to be denoted by
.. The resulting expressions can still be considered as operators, act-
ing now not on the original spaces, but rather on polynomials in the
£, with suitable vectorial coefficients. In all this we are dealing with
modules over the ring, or algebra P of polynomials in &, - - - , & with
scalar coefficients.
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We can take a small step back from algebra and in the direction of
analysis by going over to a dual machinery which uses the language
of partial differential equations. The next few sections will use such
a presentation. However one must ultimately address oneself also
to the more purely algebraic formalism.

To indicate in a few words the relevance of this machinery to the
three areas of application of polynomials listed above, I start with
the observation that we are concerned with a collection of solutions
of partial differential equations, associated in a rather obvious way
with the given operator expressions. We then study the action on
this collection effected by linear constant scalar coefficient partial
differential operators. Such operators form in various ways an algebra
of endomorphisms, and give a functional calculus. One obtains a
more flexible approach to eigenvalues by asking what such operators
annihilate some of the solutions in this collection; eigenvalues are thus
naturally associated with maximal graded ideals in the polynomial
algebra P and root-spaces with powers of such ideals. Furthermore,
other kinds of ideals also rank for consideration, namely prime, pri-
mary, and principal ideals.

As to products, orthogonality, and so on, a rather complicated but
none the less interesting situation emerges. So far as the general
theory is concerned, and apart from the ad hoc construction of prod-
ucts in particular cases, we must start with the observation that we
can form the tensor product PQP of P with itself over the field;
effectively, we are forming the polynomial algebra in double the
number of indeterminates. The second factor P might be considered
as an opposite algebra, though this point is not material in the com-
mutative case. We are then concerned with the fact that P can be
considered as a P®P-module and the resulting relations between
tensor products and torsion modules for supplemented algebras [27].

5. Partial differential equations. A common line of argument is
to deduce results concerning the solutions of constant coefficient,
partial differential equations from information about the behaviour
of associated operator-valued functions derived by replacing the
partial differentiations by scalar variables; the connection between
the two in this direction may be established, for example, by the
Fourier transform. In particular, the spectral resolution of an endo-
morphism gives rise to explicit solutions of associated differential
equations. Here our point of view is different. We are interested in
using partial differential equations as a language covering algebraic
manipulations for arrays such as (2.1). The use of differential pro-
cesses for the discussion of operator-bundles such as (4.2) may be con-
sulted in [60].
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Let us suppose that we have %k expressions (the number is not ac-
tually crucial at the moment)

(51) Dr(EO;"',gk)’ r=1,--.,k

which are polynomials in the indeterminates £,, with coefficients being
linear operators from a linear space G, to a linear space H,, respec-
tively. For definiteness, we will assume that these polynomials are
homogeneous. The next step is to replace them by similar expressions

1.
5.2 Dito -+ &), r=1,--,k

where the operator-coefficients in D, have now been given their in-
duced actions on the tensor product G as in §2. We then form the
linear constant coefficient partial differential operators

T
(5.3) D,(a/axo, ey, a/axk), r=1,.--,k

If the partial differentiations are interpreted in the usual way, we
may consider the action of (5.3) on any linear space of infinitely
differentiable functions with values in G. However, a similar appara-
tus may be used quite generally, in the absence of any topology in the
field. We consider the set Q(G), say, of polynomials or formal power
series in the x, with coefficients in G, and let the partial differentia-
tions act formally. We then define the set N of solutions of the
simultaneous equations

(5.4 Dj(&/é)xo, c o, 0/0x1)u =0, r=1,---,k u€QG.

We may grade N into homogeneous components N, say, being the
set of solutions of (5.4) which are homogeneous polynomials of degree
¢t with coefficients in G.

The objects Q(G), N are P-modules in the sense that P is the al-
gebra of scalar constant coefficient, partial differential operators. It is
an essential observation that N is closed under partial differentia-
tions.

It is of interest to study, in the finite-dimensional case, the dimen-
sionality of the space formed by the set of homogeneous n#th degree
elements of N. This integer-valued function of # forms a sort of
Hilbert function [47]. We are mainly concerned with the case in
which, for large #, this function is constant. For work on polynomial
solutions of constant coefficient equations, I cite [38], [54], [75].

In the infinite-dimensional case we can no longer talk about di-
mension. Instead, so far as constant dimension is concerned, we ask
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whether there is an isomorphism between graded components of IV of
different degrees, effected by a homogeneous element of P, perhaps
of the first order. More generally, we consider reduction by normal
sequences [76].

In the case of (4.2) we get an nth order differential operator, which
annihilates trivially polynomials of degree less than #. In this case it
is of interest to consider polynomials in N of degree #-1 and up, with
particular emphasis on the lowest component. In the standard case
this amounts to emphasising the original domain space.

6. The functional calculus. We express this in terms of the set IV of
polynomial solutions of (5.4) with vector coefficients. If pEP is a
homogeneous scalar partial differential operator, then p maps N into
itself; it is an endomorphism of N as a graded P-module, lowering the
degree of graded components by the order of p as a differential
operator. With certain reservations, we can attach a sense also to the
inverse operator p~! and to quotients p1/p. of homogeneous elements
of P.

To be more specific, let us say that p E P, of order m say, is “regular”
if the map of graded components

(6.1) p: NG — N®

is an isomorphism (of linear spaces) for £=¢, and some integer ¢,. The
set of regular elements of P includes the nonzero scalars and is closed
under multiplication and factorisation. One can thus say that an ele-
ment is regular if and only if it does not lie in a certain set of (homo-
geneous) prime ideals in P; this gives us a natural notion of the
spectrum.

For the functional calculus we consider “admissible” fractions
p1/p2; here py, pe are to be homogeneous elements of P of the same
degree, with p; “regular” in the above sense. With the usual operation
on formal fractions or quotients and rules for mutual identification,
we can say that the collection of admissible fractions forms an al-
gebra over the field in question. We denote this algebra by R and
assume that it does not merely reduce to the complex scalars, that is
to say that there do exist regular elements in P of positive degree.

It turns out that the integer ¢, may be taken to be independent of
the choice of the regular element p. and that we may associate with
p1/p: a linear space endomorphism of each graded component N
for t=¢,. This endomorphism, taking £=¢,, is specified by

-1
(6.2) N _?_L,N(twm)_’f_‘..) N,
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Here we have denoted the degree of ps(and p1) by m. If the resulting
collection of endomorphisms of N¢® be denoted by Ri, we can say
that we have a homomorphism of the algebra R of formal admissible
fractions onto a commutative algebra R, of linear space endomor-
phisms of N, In the standard case, asalsoin the case of linear param-
eters, one has £,=0, and R, is a collection of endomorphisms of the
given space G. In the case of the operator-bundle (4.2) we have, apart
from singular cases, tp=n—1. We get a functional calculus in which
formal fractions are mapped into endomorphisms of N1, As noted
above, the latter is simply the collection of all polynomials in two
homogeneous variables, of degree #—1, with coefficients in G. It is
thus isomorphic to the direct sum of # copies of G. Here we are be-
ginning to make contact with the “multiple completeness,” or
“p-fold completeness” property of operator-bundles, according to
which eigenfunction expansions are to be sought in a direct sum
space [44], [73].

To get expansion theorems by the present method, one would have
to express the algebra R; as a symmetric algebra [74], which in turn
involves duality relations and products. Without going so far let us
note that in the normed case in which G is a complex Banach space,
the algebra R, may be completed to a Banach algebra. We may
assume, though this is a little too much, that all operator-coefficients
in the D, are continuous, and norm the graded components of Q(G)
and N by crudely adding the norms of the coefficients in the poly-
nomials concerned. Then our regular fractions, if nontrivial regular
fractions exist, will be continuous, and the algebra may be completed
in the operator norm. We may then identify the maximal ideals with
fractions which vanish at points of a certain collection of nonzero
complex (k-+1)-tuples. An element of P will be regular if it does not
vanish at these points.

7. Eigenvalues and ideals. As already mentioned in §2 for a more
special case, we may for (5.1) define an eigenvalue as a nonzero
(B+1)-tuple (\o, - - -, A) such that the k linear space operators
D.(\o, + - -, M) all have nonzero kernel, or again such that the &
induced operators Df(\o, - - - , \e) have kernels, subspaces of G, with
nonzero intersection. The latter gives a natural idea of an eigensub-
space. This is all very well but leaves us without any extension of the
idea of a root-subspace or of that of the rank of an eigenvalue. It is
appropriate to recall that in algebraic geometry the intersections of a
collection of varieties may not be adequately described by a specifica-
tion of the points of intersection; likewise, in polynomial algebra, an
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ideal need not be specified completely by a knowledge of the common
zeros of its members.

To express the needed concepts in the language of partial differ-
ential equations, we must inquire into special relations which may
exist between IV, the collection of solutions of (5.4), and an ideal, w
say, in P. We confine attention to homogeneous ideals in the graded
algebra P, the original expressions (5.1) also being homogeneous. The
elements of w, as other elements of P, are currently being interpreted
as partial differential operators acting formally on polynomials. One
obvious question is whether N contains nonzero elements of all de-
grees, which are annihilated by all elements of w acting as differential
operators. Again, we may ask whether wNV, the subset of N generated
by products of elements of w and N, is actually a strict subset of N or
not. These questions have an obvious and genuine analogy with those
in the standard case in which we ask whether 4 —\I, for given scalar
A\, has nonzero kernel or cokernel. More questions of the same kind
can be asked. Generally, we are interested in the triviality or other-
wise of Extp(P/w, N),r=0, 1, - - -, and the relations between them.

In the finite-dimensional case (2.7) it is appropriate to define
ann N, the ideal in P of elements which annihilate all elements of N.
According to a modified Cayley-Hamilton theorem, ann N includes
the ideal generated by the polynomials det D, (&, - - -, &); here the
determinant is evaluated by choosing bases in G,, H,. As in the
standard matrix case, this ideal may be used to obtain decomposi-
tions. A similar ideal is used in connection with more general systems
of partial differential equations [77].

Let us now introduce a concept similar to that of the rank of an
eigenvalue. For a given ideal, we may consider the subsets of N an-
nihilated by w, by w?, : - -, and so on. These form, of course, a se-
quence of increasing subsets; a convenient notation is

(7.1) Homp(P/w, N) C Homp(P/w?, NY C - - - .

Here, in our homogeneous formulation, we consider that the inclu-
sion is strict if it is strict in graded components of arbitrarily high
degree. The inclusions are either all strict or strict up to some point
only. The least r, if any, such that Homp (P/w", N) and Homp
(P /w1, N) coincide above some graded component may be taken to
be the rank.

If > 1, we have a variety of kinds of ideal deserving consideration,
notably maximal, prime, primary and principal. In the algebraically
closed case, a maximal ideal in P is the collection of polynomials
vanishing at some scalar (k+1)-tuple; as always, we confine our-
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selves to homogeneous ideals. If w is a maximal ideal and we ask
whether w annihilates nonzero elements of N in all degrees, we are
repeating our previous definition of an eigenvalue.

In the case of a principal ideal, generated by p& P, the questions
to be asked are whether p acting on N has nontrivial kernel and
again whether it is an epimorphism. These questions arose in the
definition in §6 of a “regular” element. If p is not regular, that is to
say if p: N—N has nontrivial kernel or pN is a strict subset of N, we
proceed to the same questions for the iterates of p, or pr. If the
answers are ultimately constant for large 7, we proceed to a direct
sum decomposition.

The programme of amassing information of all kinds in the rela-
tion of an ideal in P acting differentially on NV provides an example of
pointwise spectral theory. As in the special case of the study of in-
dices, root-spaces and so on, it may be commended as worthy of
interest in itself, even without any attempt to define a spectrum and
to attach global or structural properties to it [43].

There is perhaps no need to attempt any definition of the spectrum
which should remain good for all time. Let us rather say, to begin
with, that we are concerned with topological spaces of homogeneous
ideals in P and with the properties of sheaves which may be defined
over them. The collection of such topological spaces forms, of course,
a category with continuous injections as morphisms. We are always
at liberty to use the discrete topology, and others, not necessarily
Hausdorff, may be defined without reference to a metric, such as the
hull-kernel or Zariski topologies [31], [95]. In any given setting, we
ask for the strongest or weakest topology to produce a given result,
as appropriate. The comparison of various topologies on the maximal
ideals is well known in normed ring theory [74], [80]. We stand here
at a point of confluence of algebraic tendencies in analysis and de-
velopments in algebra proper and algebraic geometry.

To indicate how sheaves come in, suppose we have a collection Q
of ideals in P, with, for simplicity, the discrete topology. For any
u&EN, we define its support as the collection of w&EQ such that
uéwN; for the topic of modules with supports, I refer to [19]. The
natural question is whether an element with empty support must be
zero or whether, in the terminology of [19], the complex formed by
this module with supports is “separated”; more in the direction of
spectral resolution, one asks whether it is “fine.” The next step is to
ask whether the images of #& N in N/wN can be prescribed at will,
or rather for what collections Q this is possible. To be more formal
about this we should set up a presheaf [52] or stack. Whatever the
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topology on £, with every open UC{Q we associate a module; each
#E N determines an element of this module, being the map from w
to the image of # in N/wN. In pointwise and local spectral theory we
are concerned with the stalks of the resulting sheaf, in global spectral
theory with the global properties of this sheaf, and in its relation to
the stack.

In the above we should add to the great variety of possible ques-
tions arising from the choice of ideals and topologies, the further
dimension arising from the possible choice of other modules asso-
ciated with (5.1). We have, for example, not touched on the ap-
paratus of fractions leading to holomorphic functions.

8. Duality. So far I have concentrated on the module IV of solutions
of the partial differential equations (5.1), since this accommodates
much that is usual in the standard case. However, there are a great
many others, arising by way of duality or resolutions, or by applica-
tion of standard functors. Here I mention one that arises by way of
linear space duality. It is to be assumed that with each linear space
we can associate a dual or conjugate, indicated by (*), as for example
in the finite-dimensional, Hilbert space or algebraic cases. The
operator coefficients in D,, given as acting from G, to H,, will have
induced actions from H}* to G;* and further induced actions on

(8.1) H=H®- - - H.

We can therefore define a second module N* as the set of solutions
of

(8.2) D,(9/0%0, + - -, 0/dxr)u* = 0, u* € Q(IN*).

Naturally, the considerations of §§5-7 may be applied also to N*,
though not necessarily producing any essential novelty.

The utility of N* lies also in certain orthogonality relations. In the
absence of assumptions of a hermitian character, we should strictly
speaking talk of biorthogonality. Special elements of N and of N*
will, in a certain sense, be orthogonal to each other. This becomes
orthogonality in the usual sense when we have a conjugacy operation
from N to N*.

I shall not go into the latter and merely want to indicate verbally
how the orthogonality is expressed. We consider elements of N as
polynomials in variables x, with coefficients in G and elements of N*
as polynomials in a duplicate set of variables ¥/ with coefficients in
H*. We set up a product of elements in N* and N whose value is a
polynomial in all these variables with scalar coefficients. We are now
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dealing with P ® P-modules in which elements of P® P act as differ-
ential operators in all 2k-+2 variables.

In fact, a product of this kind is given by a differential operator in
all the variables, with coefficients in Hom(G, H). Not all such prod-
ucts are relevant, however. We want only those associated with
differential operators which yield orthogonality relations. For this
the following is sufficient. If, replacing d/dx., 8/dx. by &, &/, the
operator in question is written

E(EO; ctt ’Ek;EO” e ,gk,)ﬁ

we require that the expressions

E(EO) ) Ek; EOI) ] Ek’)(fufﬂl— Ealgﬁ)

be expressible as linear combinations, with suitable coefficients of the
D! (¢o, - - -, &), DIEL, - - -, &). We have, indeed, a P ® P-module of
suitable operators, and no uniquely preferred product.

9. Polynomial aspects. I shall now go back to the study of the
operators (5.1) as expressions in terms of indeterminates. One must
regard this aspect as basic and the most comprehensive. The partial
differentiation interpretation we have been discussing is indeed ap-
proximately equivalent to the more algebraic interpretation to be
discussed now; the two are related by duality, as applied to the
polynomial algebra. However, such operations as replacing the in-
determinates by complex scalars, forming tensor products with rings
of fractions, are more directly connected with the interpretation in
terms of indeterminates.

Before elaborating on the duality between polynomials and partial
differential operators, a few words on the topic of polynomial al-
gebras may be in place. We are here concerned with a monoid-algebra
[62]. The monoid in question is formed by monomials J]% & with
nonnegative integral #,. The monoid-algebra consists of formal linear
combinations of these with coefficients in a field K; if we take the
coefficients in a linear space over K, then we get a module over this
polynomial algebra. A similar construction can be carried out in other
cases also. Thus, a finite group gives rise to a group algebra; the
representation theory of finite groups is concerned with modules over
this algebra. I mention this in order to place this representation
theory in alignment with what we are doing here [76].

Let P denote the polynomial algebra in &, - - -, &, and P™ the
subset formed by homogeneous polynomials of degree n. We want to
place in its formal setting the device of considering elements of P as
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partial differential operators acting on polynomials or formal power
series in dummy variables x,, - - « , % For this purpose we note that
Homg(P, K) can be considered as a P-module, with elements of P
acting multiplicatively on the first argument. More specifically,
Homg (P, K) can be considered as a direct sum of the finite-dimen-
sional linear spaces Homg(P™, K), n=0, 1,-:-. An element
pEP™ has a natural action p: P™W—P®+m and an induced action
p: Homg(Ptm, K)—Homg(P™, K). All this may be expressed
otherwise by identifying Homg(P™, K) with the set Q™ of homo-
geneous polynomials in the x, with scalar coefficients, with the con-
vention that an element of P™ acts on an element of Q™ as the cor-
responding differential operator. Thus Q, the graded P-module of
polynomials in the x,, appears as the dual to P; it is not, for us, an
algebra and does not arise in any analytic manner.

I next take up the formal operations associated with (5.1). Let
P(S) denote the set of polynomials in the indeterminates £, with
coefficients in any linear space S over the field in question. It has an
obvious grading into homogeneous components and is a P-module.
We consider the objects (5.1) as defining homomorphisms of P-
modules, namely

9.1 D.(k,---,&) :PG)—>PH), r=1---,F

In this map we multiply polynomials in the usual way; the operator
coefficients in D, will map vector coefficients in P(G,) into vector
coefficients in P(H,). For formal purposes it is convenient to write
this map as a formal complex of P-homomorphisms o P-modules

D,
9.2) 0— P(G,) — P(H,)— 0, r=1,--+,k

Similarly, if the coefficients in D, have their dual actions, we have

Df %,
9.3) 0— P(H) S P(GY—0, r=1,---,k

We must now form the tensor product of these complexes [66] of
graded P-modules; this will of course depend on the precise choice of
tensor product in the underlying linear spaces. In simple cases (9.2-
9.3) are all monomorphic, and the homology of the resulting complex
is accordingly rather simple, except at the last point, which is our
main concern.

Space and time preclude my doing much more than indicating what
this homology-module is. In the case of (9.3) we denote by M* the
quotient-module

t U
(9°4) P(G*)/[Dl, tT Dk]
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Here we have taken the liberty of writing G* for G*® - - - @G,
The denominator in (9.4) is to mean the submodule generated in P(G*)
by Di, - - -, D}, with D} acting on P(G¥® - - - QH*® - - - ®G¥).

A module M may be defined similarly in connection in (9.2). Here we
follow the pattern of algebraic geometry [31], passing from a set of
polynomials to the ideal which they generate and then to the quo-
tient-ring modulo this ideal.

The full tensor products of (9.2-9.3), certain complexes of P-
modules, are of interest in connection with direct sum or other de-
compositions of M and M*. In favourable cases, we obtain direct
sum decompositions of these complexes.

I pass now to the connection with partial differential equations.
We can interpret N as an element of Homp(M*,Q), and N* as an
element of Homp(M,Q). In the former case, if # &N, then for vari-
able ¢ & M* and fixed # we have the map from ¢& M* to ¢pu&Q;
here in forming ¢u we interpret the indeterminates £, in ¢ as partial
differential operators d/9x,, to act on the variables x, in «. In addi-
tion, the vector coefficients in M*, elements of G*, act on the vector
coefficients in N, elements of G, to give scalars. It is a matter of indif-
ference which representative in P(G*) we choose for an element of
M* since the difference between two such representatives annihi-
lates N.

In the genuine theory of linear partial differential equations with
constant coefficients, the module Q of formal polynomials or power
series is replaced by a more interesting collection of infinitely dif-
ferentiable functions, and of course the differentiation is no longer
formal. The technique of forming a quotient-module from a given
set of operators, and then using its free resolution, has been used by
Palamodov [77] in his work on “M-convexity.”

10. Singular matrix pencils. I would like to make the above con-
structions more explicit in a rather simple case, that of a pencil

(10.1) D = At + By,

where 4, B are homomorphisms from a linear space G to a linear space
H, both of finite dimension, not necessarily the same in each case.
I now use P to denote the algebra of polynomials in the indeter-
minates £, 9, while P(G), etc., will be the corresponding object with
coefficients in G. In place of (9.2-9.3) we have the formal complexes

(10.2) 0— P(G) 2) P(H)— 0,

(10.3) 0— P(H*) —2 P(G*)— 0.
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We have no immediate room for tensor products (though it is useful
to tensor (10.2-10.3)). The homology-modules (10.2-10.3) at the
second points, or cokernels of D, are

(10.4) M = P(H)/DP(G),
(10.5) M* = P(G*)/P(H*)D.

Let further Q denote the set of formal power series or polynomials
in “variables” x, y, with a similar notation in the case of vectorial
coefficients. Then Q, Q(G), etc., are P-modules if £, 5 act as 9/9x,
d/9dy. Then N, N* are respectively the sets of solutions of the dif-
ferential equations

(10.6) Du=0, u€EQG),
(10.7) Du* =0, u*E QHY.

In spectral theory, these commonly appear under another name.
If we consider a typical element of N in the form

n n
(10.8) u=y, g,x""‘y'( ), g € G,
) r

then (10.6) is equivalent to
(10.9) Ago+ Bgi =0, -+, Agar + Bg, = 0.

Such objects are known as “chains,” for the detailed theory of which
I refer to the works cited in §2. Much as in §§6-7, chains provide an
extension to pencils of the construction of polynomials in an endo-
morphism.

Chains of a slightly different kind play a role in the reduction of
singular matrix pencils, in which D in (10.2-10.3) need not be mono-
morphic [42, p. 35]. I should like to illustrate the present formalism
by showing how this topic fits into it.

If we consider the kernel, L* say, of (10.3), we see that it is gen-
erated by homogeneous polynomials in &, 7 with coefficients in H*.
In a typical case,

(10.10) S ki Ty (At + B =0, mEHR,
0
which is equivalent to

(10.11) %A =0, FhB+hA=0,---,MB =0,

which is the other kind of “chain” mentioned. When these chains are
present at all, they have certain orthogonality relations with chains
of the previously mentioned type.



1968] MULTIPARAMETER SPECTRAL THEORY 21

To clarify this, it is useful to consider Tor} (M*, K), where K is
the field, and is a P-module under the usual prescription that (K
=9K =0. We may calculate it either by means of the resolution

(10.12) 0— L*— P(G*) — P(H*)— 0,
as a left complex over M*, or again, in the case of K, by means of
(10.13) 0—>P—POP—>P—0.

Here the first nontrivial map takes p into (¢p, 7p) and the second
takes (p1, p2) into (np1—E&ps). The first gives the elements of L*
reduced modulo those generated by elements of L* of lower degree,
while the second gives elements of M* which are annihilated by
multiplication by £ and also by . A more detailed argument shows
that the connecting homomorphism reduces degrees by 1; we have
an isomorphism between elements L* of degree -1 taken modulo
those generated by elements of L* of lower degree and by elements
of M*, annihilated by & and by 7, of degree n. The latter in turn yield
a special kind of element of N, namely those which cannot be gen-
erated by differentiation of higher order elements of N. We derive a
product between special elements of L* and special elements of N,
in which we go from L* to M* by means of the connecting homo-
morphism, and then apply the result to elements of N, more specifi-
cally to elements of Ext3(K, N).

As usual, the topic of products has further ramifications. For
v*&L* uE N, we may interpret v*4u, v*Bu as polynomials in £, 9,
x, ¥ with scalar coefficients without, that is, making &, 9 act differenti-
ally. We have therefore maps

L*AN, I*BN — P ®¢ 0,

which are homomorphisms of P®gP-modules (the second factor
acts differentially); the differential machinery is creaking slightly
here. It then turns out that the images in these maps have a highly
special form, namely annihilated by skew-symmetric elements of
PQxP or by (19/0x—£3/dy) (see e.g. [42, pp. 35-42]).

11. Determinantal procedures. I should like to move away from
problems in the polynomial area and consider briefly some points
which arise in connection with the array (2.1). It is natural, in view
of the special case in which the G, are all one-dimensional, to apply
techniques involving determinants, minors, and cofactors. Here we
mean determinants with operator entries.

Let us pose the extension of the problem of the solution of % scalar
inhomogeneous equations in k2 unknowns. We start with an array
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A, asin (2.1), but with 1 <7, s k. Again,we assume that4,.: G,—H,
is a linear operator and denote by A/, the induced operator acting
from (2.4) to the rth of the spaces (2.5). In the problem in question

we suppose given 2,EG® - - QH,Q® - -+ @Gy, r=1, - - -, k, and
ask for gy, - - -, g+ &G such that

Eoot
(11.1) EA"g.=hr, r=1,...’k.

s=1

We now follow the procedure of Cramer’s rule. Let A denote the
determinant of the A4}, the operators being multiplied according to
operator-composition, or for that matter the determinant of the 4,,
with tensorial multiplication. The value of A will be a homomorphism
from G to H. We denote by A,, the cofactor of 4,, which will map
from Gi® - - - QH,® - - -® G; into H. On applying, for any fixed s,
the operators A, to (11.1) and summing over 7, we obtain

k
(11.2) Age = D Aphy, s=1,-++,Fk

=1
It follows from this that if A is an isomorphism, then (11.1) has at
most one solution, given by (11.2).

However, in contradistinction to the scalar case, we cannot check

this solution by substitution and rearrangement of factors. The
necessary identity is

(11.3) > AI.A"IA.,. =0 (r#uw),
=1 (f = u))

where I, denotes the identity on Gi1® -+ - ® H,® - - - ®G;. Here
it is not permissible to rearrange the factors on the left of (11.3).
The conclusion that if A is an isomorphism, then (11.3) hold, and
so Cramer’s rule in this setting, is easily established by dimensional
arguments if (2.7) holds.
A similar problem arises for the full array (2.1) when we ask for
the general solution of

Eoot
(11.4) > Apge =0 r=1,--+ kL

8=0

In this case, let A, denote the determinant, a homomorphism from
G to H, obtained from this array by omitting the column containing
A4;, multiplied by (—1)°. Let us assume that at least A is an iso-
morphism (any linear combination of the A, would do as well). We
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then have as a consequence of (11.4) that

-1
(11.5) g = Ao Asgo,

which specifies g1, - - -, gx in terms of go. The question is now whether
(11.5) gives a solution with g, arbitrary, and again dimensional con-
siderations suffice in the finite-dimensional case. We are here con-
cerned with whether the operators Aj'A,, s=1, - - -, &, all commute
as endomorphisms of G [9]. One may express (11.4-11.5) in terms
of partial differential operators and indeed as a microscopic part of a
rather large diagram.

There are many other problems regarding decomposability which
admit a ready solution in the finite-dimensional case. Thus, for (11.1),
one asks whether, if A is singular, i.e. has nonzero kernel, its kernel
contains nonzero decomposable tensors, and this is true if (2.7) holds
[10]. A similar situation holds regarding positive-definiteness on
decomposable tensors for hermitian operators on finite-dimensional
Hilbert spaces.
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