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1. Introduction. A previous note [l] introduced some systems of 
nonlinear functional-differential equations of the form 

(1) X(/) - AX(t) + B(XÙX(t - r) + C(0 * ^ 0, 

where X=(xi, • • • , xn) is nonnegative, B(Xt) is a matrix of non
linear functionals of X(w) evaluated at all past times ze;£[ —r, / ] , 
and C=(G, • • • , Cn) is a nonnegative and continuous input func
tion. Some global ratio limit theorems were then stated for one of 
these systems. Here two other cases are considered. In particular, 
we study the dependence of the stability properties of (1) on the 
time lag r. 

Our systems are defined as follows. Given any positive integer n; 
any real numbers a> u, j3>0, and r ^ O ; and any nXn semistochastic 
matrix P = ||/><y|| (Le-» Pv = ° a n d Z)2-i^»* = 0 or 1), let 

(2) ±i(t) « -aXiif) + p £ **(' ~ r)yki(t) + C«(0, 

(3) »»(0 = PnfiaAÜ J È ^ M W 1 ' 

and 

(4) i»(ft = [-«*,*(<) + lM< - T)«fc(0]tf(#A), 

for all *', j , k = 1, 2, • • • , », where 

0(/>) = 1 if # > 0, 

= 0 if p g 0. 

The initial data in [—r, O] is always chosen continuous, nonnega
tive, and with zJh(0)>0 iff p,k>0. 

In Grossberg [ l ] , we announced some results for the case 

P = 
0 

» — 1 » — 1 

0 
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Here we state some results for the cases P = En/n and P = l/(n — 1) 
• (En~-In), where En is the nXn matrix with l 's everywhere and In 

is the nXn identity matrix. In both cases, we choose all Cy to be 
identically zero. 

2. Complete graphs with loops. Suppose P — En/n. In terms of 
the graph theoretical interpretation previously given [ l ] , this means 
that every vertex Vi is connected to every vertex v$ with an equal 
weight pij=l/n. The graph of this system is therefore complete, and 
since i~j is permissible it is a complete graph with loops. 

For fixed r ^ O , let S(T) be the largest real part of the zeros of 
RT(S)=S+a-Pe~TS, and let <T(T)=U+2S(T). The sign of cr(r) 
influences the limiting behavior of the ratios yjk(t) and Xi(t) 
= #t(0 [XXi^fcCO]""1 as J-*» oo, and in particular the behavior of 
3>t(0 = min {yki(t)i fe = l, 2, • • • , n) and F»(/) = max {?*<(/): fe=»l, 
2, • • • ,»} . 

THEOREM 1. For any fixed n^2 and r è O wi/ft <7 (T)>0 , / ^ (2)-(4) 
fewe arbitrary nonnegative and continuous initial data. Then the limits 
Ç» = lim<H>00 Xi(f) and Py/b = lim^oo yjk(t) exist and satisfy the equations 

(5) Q< = Pa, i,j= 1,2, • • . , n . 

Moreover Qi^[mit Mi] where mi = min(JC*(0), 3>»(0)) awd ilft-
= max(-X\(0), F t(0)). The functions Xi-~yif Xi—Yif yit and Ft-
change sign at most once and not at all if y»(0) ^X%(0) g F<(0). 

3. Stability properties are graded in the time lag r . Theorem 1 has 
an unusual consequence when a>@. This case is characterized by the 
property that l ime^ Xi(t) = 0 for all i = l , 2, • • • , n and all r ^ O . 
Heuristically this is the case for which the effect of all perturbations 
d over a finite time interval eventually die out. 

PROPOSITION 1. If a>j3, then <T(T) is monotone increasing in ri^O, 
and a(0)'=<r^u+2(P~a). 

Thus if a>P, then cr(ro)>0 implies that Theorem 1 holds for all 
r e TO. We therefore say that the stability properties when P~En/n 
are graded in r â O . In particular, if w>2(a~ j8 )>0 , then Theorem 1 
holds for all r è 0 and all n è 2. 

4. Dependence of limiting equations on the time lag r. The condi
tion <T(T) > 0 is not superfluous to guaranteeing the limiting equations 
(5), as we now illustrate in the case r = 0 for simplicity. 

PROPOSITION 2. If or<0, then 
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l»»-»ml<"*(»+1j7I^) 
for all t*z0, where z^ = ]Cm-i ZM and x— ]Cw-i xk. 

In particular if | <T| is chosen so large that 

| *,(0) - ,«(0) I > 2 log ( l + J J - J - J ^ ) ( , + ^ ^ ) . 

then the equations Pjk = Qk and Pik — Qk cannot be simultaneously 
fulfilled. 

5. Complete graphs without loops. In the complete graph with 
loops, any probability distribution Qi can arise as a limit when /—» oo 
if <r(r)>0. Simply let m» = Mi be the desired distribution. When the 
loops are removed from the complete graph, this is no longer 
true in general. This latter case is characterized by the matrix 
P = (En — In) / (n — l) since then pu-0, i = l, 2, • • • , n. We illustrate 
this fact in the complete 3-graph without loops. 

THEOREM 2. Let P = %(Ez—Iz) and r = 0. Then for any positive 
initial data satisfying Zij(0) = 2/»-(0), i, .7 = 1, 2, 3, the following conclu-
sions hold. 

(A) {Limiting behavior.) All the ratios Xi and yjk have limits 
Qi = limt^0Q Xi(t) and Pjk = limuoo yjk(t) which satisfy the equations 

(6) J fc G< - QjP,i + G*A<, U>J> * } - { ! , 2, 3}. 

In particular 

lim Xi(t)e<«-w = Qi J2 **(0). 

(B) (Uniqueness.) If moreover the coefficients satisfy the inequality 
(T = w+2(j3—o:)>0, /ftw ö» = l /3 , awd P/* = py* = J(l —8y*)i i, i, & 
= 1,2,3. 

That is, the dynamical "limiting transition probabilities" Pjk al
ways equal the geometrical "path weights" pjk, in sharp contrast to 
the complete graph with loops. <r>0 can be guaranteed if a:>j3, or 
öj<j8, or a — f3, for appropriate choices of u (e.g., if u>l\a—18| ). Since 
# = ]Cf-itf& obeys the equation #=(/3—a)x, lim^oo #,(0=0 if ce>]8, 
lim^oo #<(*) = oo if a<j8, and 2jt-i xk(t) = constant if a=/3. In all 
cases lim^co X*(/) = 1/3. The absolute size of the outputs Xi(t) is thus 
a bad index of the stability of the ratios Xi(t) as /—> oo. 
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The manner in which these limits are approached can also be 
qualitatively studied. 

(C) {Oscillations.) For all indices {i, j , k) = {1, 2, 3}, the functions 
fij^Xi—Xj, gijk^Zij—Zik, hijk = XiZjk—xkZji, and y y change sign at most 
once, ja and gkij do not change sign at all if fij(0)gkij(0)^0t while y^ 
and hjki do not change sign at all iffij(0)gkij(0) è 0 and hjki(0)gkij(0) è 0. 
Moreover fij(0)gkij(0)>0 implies fij(t)gkij(t)>0 for all t^Ot while 
fij(0)gkij(0) > 0 and hjki(0)gki3i0) > 0 imply fij(t)gkij(t) > 0 and 
hjki(t)gkij(t)>0 for all t^O. 

For example, if Xi(0)>xj(0) and zki(0)>zkj(0), then Xi(t)>xj(t) 
and zki(t)>zkj(t) for all / ^ 0 . That is, a common ordering in cor
responding vertices and edges "propagates through time" and there
fore is a geometrical property of the graph. If moreover xj(0)zki(0) 
>Xi(0)zkj(0), then ya{t) approaches its limit monotonically but does 
not reach this limit in finite time. 

Proposition 2 also holds in the complete 3-graph without loops. 
When (x<0 and | crj B̂>0, the ratios yik{t) are approximately constant. 
Nonetheless the limiting equations (6) hold because the ratios Xi(t) 
adjust themselves as much as is required to reach an "equilibrium" 
state as /—»«>. 

6. The variational system. In this section we linearize the complete 
graphs with and without loops. We compare these linearizations with 
their nonlinear counterparts and in the graph without loops treat 
the general case P = (En — In)/(n — 1). Although conditions under 
which ratio limits exist coincide, the limiting equations are not always 
the same. 

(2)-(4) can be written in matrix form when all C/s=0 as 

(7) U(t) =f(U(t),U(t-T))} 

with 

U = (#1, • • • , #», «ii, £12, • • • , 3n,n-l, Znn)9 

ƒ = (fh • • # , fn, j f l l , f 12, * * ' , j fn ,n- l , fnn), 

ƒ i = — aXi + 0 j j Xk(t — r)pkiZki [ YJ PkmZjcm ) 
k*~l \ m~l / 

and 

fjk = [-uzjk + Pxj(t - r)xk]0(pjh). 

A positive solution U of (7) is one for which Xi(t)>0 and zjk(t)>0 
iff pjk>0 for all t*z0. A positive uniform solution î/0 of (7) is one for 
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which Xi(t) * Y ( 0 >0 and zjk(t) = 5(t)6(pjk), where 6(0 >0, for all *à0. 
If F = V— Uo, then [2] using the notation ƒ=ƒ(£, *?), 

nt)=MUo(t), U0(t~T))V(t)+fn(Uo(t), UQ{t-T))V(t-T)+0<\\V\\). 

This system is studied because 

Xi - 1 = (l ~ „) ( V J £ ^ 1 - —) > where F* = *< - 7, 

whenever 7 and 232=1 x& a r e given the same initial data. Ignoring the 
terms o(\\ V\\), which are 0{e^"a)t) and therefore exponentially small 
when or>/3, we find 

(8) W(t)-MUM, Uo(t-r))W(t)+UU»(t), U,(t-r))W(.t-i), 

which is the variational system of (7). We write W in component 
form as W=(fti, • • • , hn, fax, • • • , hnn), and for every ƒ £ C° [0, r ] 
we define 

K*(f)=f(r)+P f'f&e-^d!;. 
•Jo 

The linearized analog of Theorem 1 is then the following 

THEOREM 3. Let P = En/n where n^2 and r è 0 is chosen arbitrarily 
with (T(T)>0. Let UQ be a fixed but arbitrary positive uniform solution 
of (7). For any solution of (8) whose initial data satisfies KT( 2*-1 hi) 9^ 0, 
the limits 

Qi = Urn hi(t) \ J2 hm(t) 

and 

Pjh = lim hJk(t) \ è M ö l 

exist and satisfy the equations 

(9) P» = (& + &) / ( ! + nQi). 

Thus linearizing (7) as in (8) changes the distribution of its ratios 
as t—»<*>. The two conditions Qk — Pjk and (9) are compatible when 
& > 0 i f f & = />ye = l/n. 

The linearized analog of Theorem 2 is now given in terms of the 
functions &(r)a=/3r~T*(T) and cr(r). 

r 
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THEOREM 4. Let P = (£„ — /„ ) / (« —1), where n*z3 and T ^ O are 
chosen to satisfy <r(r)>0 and é(r)+cr(T)>fe(r)(l+r<r(r))/(w —1). 
Let Uo be any positive uniform solution of (7). Then there exist positive 
constants coi and C02 such that for any solution of (8) whose initial data 
satisfies i£r(]T)?-i hi) 5^0, 

hi(t) T £ Âm(') 1 0(e~»i<) 

and 

*»(0 f E Mol 7 « 0(^f). 
L m*j J « — 1 

COROLLARY 1. For every r > 0 weft / t o <r(r)>0, tfftere extós aw 
w = n(r) such that Theorem 4 holds for n and r. 

COROLLARY 2. Theorem 4 is true for all systems with n*zno and T^ TO 

if it is true for n = no and r=r o. If r — 0 <wd! cr > 0, Theorem 4 w Jr«e /or 

That is, stability is graded in n. 

COROLLARY 3. If Theorem 4 holds for n~no and r = r 0, then it holds 
for n = n0 and all r in a neighborhood of TO. 

COROLLARY 4. If a>{i {i.e., lim*-* Xi(t)=0for all r ^ O , there exists 
a positive function ju(w) ofn^3} which is monotone increasing in n with 
limnH>00 fi(n) = 00, such that Theorem 4 holds for all n^ 3 andrÇz [O, /* (n)). 

6. Summary, Global ratio limit theorems are stated for some non
linear functional-differential equations and their linearizations. The 
possible limits depend on the matrix P characterizing the geometry 
of the system. A system is found whose stability becomes easier to 
guarantee as its time lag increases, and several of whose ratios oscil
late no more than once and are monotonie as t—> <*> no matter how 
large the time lag is. 
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