ON THE COMMENSURABILITY CLASS OF THE SIEGEL MODULAR GROUP

BY NELO D. ALLAN
Communicated by Murray Gerstenhaber, March 7, 1967

The purpose of this note is to determine the commensurability class of G_{0}, where G is either the Sympletic Group Sp_{n} or the Special Linear Group Sl_{n}, and \mathfrak{o} is the ring of integers of a number field k of finite degree over the rationals. This problem has been solved in the local case by Hijikata [6], and Bruhat [3], for Sl_{n} and by Allan [1] and Bruhat-Tits [8] for Sp_{n}. The only known global solution is due to Helling [5], in the case of Sl_{2}. We shall exhibit a countable family of arithmetic groups in G, such that every maximal arithmetic group is conjugate to one group of the family, and if o is a principal ideal ring, every group of this family is a maximal arithmetic group.

We know that if G is a connected semisimple linear group defined over k, which is absolutely irreducible as a matrix group, then a maximal arithmetic group Δ is the normalizer of its intersection Δ^{\prime} with G_{k}, and Δ^{\prime} is selfnormalizer in G_{k}. Our problem is then to determine the selfnormalizer subgroups of G_{k} whose normalizer is maximal, because the maximal groups which are the normalizer of maximal subgroups of G_{k} has already been determined in [1], for the groups we are interested in.

Let \mathfrak{p} be a finite prime spot of k and $k(p)$ be the completion of k at \mathfrak{p}; let $\mathfrak{p}(\mathfrak{p})$ be the ring of integers of $\boldsymbol{k}(\mathfrak{p})$. Let Δ be an arithmetic group contained in G_{k} and let $\Delta^{\mathfrak{p}}$ be its \mathfrak{p}-adic closure in $G_{k(\mathfrak{p})}$. Assume that $N_{k}(\Delta)=\Delta$, and let \Im be the ideal in \mathfrak{o} generated by all $\mu \in \mathfrak{o}$ such that μg has only algebraic integral entries for all $g \in N(\Delta)$. Let $\Omega(p)$ be the algebraic closure of $k(\mathfrak{p})$. It is easy to see that $N(\Delta)$ can be imbedded in $N\left(\Delta^{\mathfrak{p}}\right)$. Clearly the groups Δ which we want to determine are such that $\Delta=\cap\left(G_{k} \cap \Delta^{\mathfrak{p}}\right)$, the intersection taken over all finite primes of k. From now on we shall assume that all groups Δ considered, have this property. We shall also assume that G has the strong approximation property (see [7]). Then it is very simple to verify the following two lemmas:

Lemma 1. $N_{k}(\Delta)=\Delta$ if and only if $N_{k(\mathfrak{p})}\left(\Delta^{\mathfrak{p})}=\Delta^{\mathfrak{p}}\right.$ for all p. Similarly Δ is maximal in G_{k} if and only if $\Delta^{\mathfrak{p}}$ is maximal in $G_{k(\mathfrak{p})}$ for all \mathfrak{p}.

Lemma $2 . \Delta$ is conjugate to Γ in G_{k} if and only if $(\Delta)^{\mathfrak{p}}$ is conjugate to $(\Gamma)^{\mathfrak{p}}$ in $G_{k(\mathfrak{p})}$ for all \mathfrak{p}.

For each \mathfrak{p}, let $\Sigma_{\mathfrak{p}}$ be a finite set of open compact subgroups of $G_{k(\mathfrak{p})}$ such that

1. Every Δ in $\Sigma_{\mathfrak{p}}$ is selfnormalizer in $G_{k(\mathfrak{p})}$.
2. $N(\Delta)$ is maximal in $G_{\Omega(p)}$, for all $\Delta \in \Sigma_{\mathfrak{p}}$.
3. If Δ^{\prime} is a maximal arithmetic group in $G_{\Omega(p)}$, then $\Delta^{\prime}=N(\Delta)$, where Δ is conjugate in $G_{k(p)}$ to some group in Σ_{p}.

Let Σ be the set of all arithmetic groups in G_{k}, such that their \mathfrak{p}-adic completion lies in $\Sigma_{\mathfrak{p}}$ for all \mathfrak{p}.

Theorem 1. If Δ^{\prime} is maximal arithmetic group in G, and $\Delta=\Delta^{\prime} \cap G_{k}$, then $\Delta^{\prime}=N(\Delta)$, and Δ is conjugate in G_{k} to an arithmetic group in Σ.

The proof of this theorem is an immediate consequence of the above lemmas.
2. Case $G=\mathrm{Sl}_{n}(C)$. Let $\mathfrak{N}_{i j}, i, j=1, \cdots, n$ be n^{2} fractional ideals in k such that $\mathfrak{A}_{i j} \mathfrak{H}_{j k}=\mathfrak{A}_{i k}$, for all $i, j, k=1, \cdots, n$, and $\mathfrak{H}_{i j}$ is nth power free. Let $\mathfrak{B}_{i j}$ be integral ideals such that

1. $\mathfrak{B}_{i j}=0$ if $i \geqq j$ and $\mathfrak{B}_{i j} \mathfrak{R}_{j k}=\mathfrak{B}_{i k}$, for all $i, j, k=1, \cdots, n$.
2. $\mathfrak{B}_{i j} \mid \mathfrak{B}_{i m}$ and $\mathfrak{B}_{t j}$ for all $t \leqq i$ and $m \geqq j$, and $\mathfrak{B}_{i j}$ is square free for all $i, j=1, \cdots n$.
3. For each $\mathfrak{p} \mid \mathfrak{F}_{1 n}$ there exists $\mathfrak{b} \mid \mathfrak{B}_{1 n}$ such that if $s=s(\mathfrak{b})$ is defined by $\mathfrak{d} \mid \mathfrak{B}_{1 s+1}$ but $\mathfrak{d} \nmid \mathfrak{O}_{1 s}$, then $s \mid n, s(\mathfrak{p})=s(\mathfrak{d})$, and if $n=s(\mathfrak{d}) n(\mathfrak{d})$, then the ideal class of \mathfrak{D} is an $n(\mathfrak{b})$ th power of a some ideal class in k.
4. For all divisors \mathfrak{b} of $\mathfrak{B}_{1 n}$ and all $m=1, \cdots, n(\mathfrak{b}), \mathfrak{D} \mid \mathfrak{B}_{i j}$ for all $i \leqq m s(d)$ and for all $j>m s(d)$.

Let $L(\mathfrak{H}, \mathfrak{B})$ be the direct summand order $L=\left(L_{i j}\right)$ where $L_{i j}$ $=\mathfrak{A}_{i j} \mathfrak{R}_{i j}$. We remark that $L(\mathfrak{0}, \mathfrak{B})^{\mathfrak{p}}$ the order obtained by Hijikata [5], and every order $L(\mathfrak{Y}, \mathfrak{B})^{\mathfrak{p}}$ is conjugate to one of such orders in $\operatorname{Sl}_{n}(\Omega(\mathfrak{p}))$. Let $\Delta(\mathfrak{H}, \mathfrak{B})=L(\mathfrak{A}, \mathfrak{B}) \cap \mathrm{Sl}_{n}(k)$. Let Σ^{\prime} the family of all $\Delta(\mathfrak{N}, \mathfrak{F})$, and let $\Sigma_{\mathfrak{p}}$ be the set of all $\Delta(\mathfrak{H}, \mathfrak{B})^{\mathfrak{p}}$. We observe that the class Σ consists of all $\Delta(\mathfrak{H}, \mathfrak{B})$, where we drop the condition 3 for $\mathfrak{B}_{i j}$.

Theorem 2. If $N_{k}(\Delta)=\Delta$ and $N(\Delta)$ is maximal in G, then Δ is conugate in $\mathrm{Sl}_{n}(k)$ to some $\Delta(\mathfrak{A}, \mathfrak{B}) \in \Sigma^{\prime}$.
2. $\Delta \in \Sigma^{\prime}$ then $N(\Delta)$ is maximal and $N(\Delta) / \Delta \simeq \mathfrak{u}_{n} \times \mathfrak{C}_{n}\left(\mathfrak{B}_{1 n}\right) \times \mathfrak{G}_{n}\left(\mathfrak{B}_{1 n}\right)$ (See [1], description of $N(\Delta) / \Delta)$.

The proof is obtained from Theorem 1 and by showing that for each $\mathfrak{d} \mid \mathfrak{B}_{1 n}$ we can construct a matrix $g \in N(\Delta), g=\left(g_{i j}\right)$, such that $\left(g_{i j}\right)^{n(\delta)}$ $\left.=\left(\mathfrak{H}_{i j}^{\prime}\right)^{n(\mathrm{~b}}\right) / \mathrm{d}$, where $C\left(\mathfrak{H}_{i j}\right)^{n(\mathrm{~d})}=C(\mathfrak{d})$. The proof of the maximality follows from the description of $N(\Delta) / \Delta$.
2. Case $G=\operatorname{Sp}_{n}(C)$. Let $\mathfrak{A}_{1}, \cdots, \mathfrak{H}_{n}$ and $\mathfrak{B}_{1}, \cdots, \mathfrak{F}_{n}$ be integral ideals such that

1. $\mathfrak{U}_{i} \mid \mathfrak{A}_{j}$ and $\mathfrak{B}_{i} \mid \mathfrak{F}_{j}$, for all $1 \leqq i \leqq j \leqq n$.
2. $\mathfrak{N}_{n} / \mathfrak{R}_{1}$ and $\mathfrak{B}_{n} / \mathfrak{B}_{1}$ are square free and $\left(\mathfrak{B}_{n}, \mathfrak{N}_{n} / \mathfrak{R}_{1}\right)=1$. We shall assume that when $n=2 s$ is even, then $\mathfrak{B}_{s}=\mathfrak{B}_{s+1}$.
3. If \mathfrak{q} is a nonprincipal prime, with $\mathfrak{q} \mid \mathfrak{B}_{n}$, then there exists $\mathfrak{d} \mid \mathfrak{B}_{n}$ such that $\mathfrak{q} \mid \boldsymbol{d}$ and the ideal class of \mathfrak{b} is a square.

We set

$$
\begin{align*}
& \mathcal{L}=\nu e_{1}+\cdots+\nu e_{n}+\mathfrak{Y}_{1} \mathfrak{B}_{1} e_{n+1}+\cdots+\mathfrak{Y}_{n} \mathfrak{B}_{n} e_{2 n} \text { and } \\
& \mathcal{L}^{\prime}=\boldsymbol{d} e_{1}+\cdots+\boldsymbol{v} e_{n}+\mathfrak{A}_{1} \mathfrak{B}_{1}^{\prime} e_{n+1}+\cdots+\mathfrak{A}_{n} \mathfrak{B}_{n}^{\prime} e_{2 n} \tag{1}
\end{align*}
$$

where $\mathfrak{B}_{j}^{\prime}=\left(\mathfrak{B}_{n} / \mathfrak{F}_{n+1-j}\right)$. If $\mathfrak{b} \mid \mathfrak{B}_{n} / \mathfrak{B}_{1}$, we set $s=s(\mathfrak{l})$, the index s such that $\mathfrak{d} \nmid \mathfrak{B}_{s} / \mathfrak{B}_{1}$ but $\mathfrak{d} \mid \mathfrak{B}_{s+1} / \mathfrak{F}_{1}$. If n is odd, we set $\mathfrak{Y}^{\prime}=0$ and if n is even, say $n=2 s$, then we set \Im^{\prime} be the product of all primes \mathfrak{p} dividing $\mathfrak{A}_{s+1} / \mathfrak{N}_{s}$ such that there exists a divisor \mathfrak{b} of this ideal such that $\mathfrak{p} \mid \mathfrak{b}$ and the ideal class of \mathfrak{d} is a square. We shall denote by $\Delta(\mathfrak{A}, \mathfrak{B})$ the subgroup of $\mathrm{Sp}_{n}(k)$ consisting of all matrices $g \in \mathrm{Sp}_{n}(k)$ such that $g \mathscr{L}=\mathfrak{L}$ and $g \mathscr{L}^{\prime}=\mathscr{L}^{\prime}$.

Theorem 3. If Δ is an arithmetic group in $\mathrm{Sp}_{n}(k)$ such that $N_{k}(\Delta)=\Delta$ and $N(\Delta)$ is maximal, then Δ is conjugate in $\mathrm{Sp}_{n}(k)$ to some $\Delta(\mathfrak{H}, \mathfrak{B})$.
2. If for all primes \mathfrak{p} dividing \mathfrak{B}_{n} such that it satisfies 3 , we have $s(\mathfrak{p})=s(\mathfrak{b})$, then $N(\Delta(\mathfrak{A}, \mathfrak{F}))$ is maximal, and $N(\Delta(\mathfrak{A}, \mathfrak{F})) / \Delta(\mathfrak{A}, \mathfrak{B})$ $\simeq \mathfrak{U}_{2} \times \mathfrak{C}_{2}(\mathfrak{F}) \times \mathfrak{G}_{2}(\mathfrak{Y})$, where $\mathfrak{Y}=\mathfrak{S}^{\prime} \mathfrak{B}_{n}$.

We shall sketch the proof. Let $\Sigma_{\mathfrak{p}}$ be the family consisting of all $\Delta(\mathfrak{A}, \mathfrak{B})^{\mathfrak{p}}$, hence Σ is the family of all $\Delta(\mathfrak{V}, \mathfrak{B})$ obtained by dropping the condition 3 on \mathfrak{B}_{n}. We denote by Σ^{\prime} be the family of all $\Delta(\mathfrak{R}, \mathfrak{B})$ and $\Sigma^{\prime \prime}$ be the subfamily consisting of those groups satisfying the hypothesis of the theorem. Our first assertion follows from Theorem 1 , and from the fact that if $\Delta(\mathfrak{A}, \mathfrak{B}) \in \Sigma$, then $N(\Delta(\mathfrak{A}, \mathfrak{B}))$ is maximal if and only if for all $\mathfrak{p} \mid \mathfrak{F}_{n}$ such that there is no $g \in N(\Delta(\mathfrak{A}, \mathfrak{B})), g=\left(g_{i j}\right)$ and $2 \mathfrak{o r d}_{\mathfrak{p}}\left(g_{i j}\right)^{2}$, then $\Delta(\mathfrak{H}, \mathfrak{B})^{\mathfrak{p}}$ is maximal in $\operatorname{Sp}_{n}(k(\mathfrak{p}))$. To get our second assertion for each $\mathfrak{b} \mid \mathfrak{F}$ such that the class of \mathfrak{b} is a square, we construct an element g in $N(\Delta(\mathfrak{Y}, \mathfrak{B}))$ such that $g=\left(g_{i j}\right),\left(\left(g_{i j}\right)^{2}\right)$ $=\left(\mathfrak{A}_{j}^{\prime}\right)^{2} / \mathfrak{b}$ for all $i, j=1, \cdots, 2 n$, where $\mathscr{A}_{i j}$ are integral ideals.

We would like to point out that if k has class number one, then $\Sigma=\Sigma^{\prime}=\Sigma^{\prime \prime}$. Also our family is not the smallest as possible, i.e., there are pairs of $\Delta \in \Sigma^{\prime}$ which are conjugate in $\mathrm{Sp}_{n}(C)$. Hence,

Corollary. If Γ is the Siegel Modular Group, then up to conjugacy in $\mathrm{Sp}_{n}(Q)$, the family of the normalizers in $\mathrm{Sp}_{n}(R)$ of the groups of Σ consists of all maximal arithmetic groups in the commensurability class of Γ. If $\Delta(\mathfrak{H}, \mathfrak{B})$ lies in Σ, then the index of $\Delta(\mathfrak{A}, \mathfrak{B})$ in the normalizer of it in $\mathrm{Sp}_{n}(R)$ is 2^{a}, where a is the number of primes dividing \Im.

References

1. N. Allan, Arithmetic subgroups of some classical groups, Anais da Academia Brasileira de Ciencias (to appear).
2. ——, Maximal open-compact suhgroups of the projective symplectic group over a locally compact discrete valuation field, Pacific J. Math. (to appear).
3. F. Bruhat, "p-adic groups," in Algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., Vol. 9, Amer. Math. Soc., Providence, R. I., 1966, pp. 63-70.
4. L. Gutnik, On the extension of integral subgroups of some groups, Vestnik Leningrad Univ. Ser. Math. Mech. and Astr. 19 (1957), 51-79.
5. H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulegruppe, Math. Z. 92 (1966), 269-280.
6. H. Hijikata, Maximal compact subgroups of \mathfrak{p}-adic classical groups, Sugaku no Ayumi 10-2, 1963, pp. 12-23. (Japanese)
7. M. Kneser, Einfach zusammenhängende algebraische Gruppen in der Arithmetik, Proc. Int. Congr. Math. Stockholm, (1962), pp. 260-263.
8. J. Tits and F. Bruhat, BN-paires de type affine et données radicielles, C. R. Acad. Sci. Paris, 263 (1966), 766-769.

University of Notre Dame

