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1. Introduction. Let G be a connected semisimple Lie group with 
a finite center and let K be a maximal compact subgroup of G and 
let X = G/K be the homogeneous space of left cosets gK(gÇzG) 
of the group G with respect to the subgroup K. Then it is known that 
a G-invariant Riemannian metric can be introduced in the space X 
so that X becomes a Riemannian symmetric space of nonpositive 
curvature. Let ® be the Lie algebra of G and let $ be the subalgebra 
of © corresponding to the subgroup K. Let $ be the orthogonal com­
plement of $ in ® with respect to the Killing form ( , ) of the alge­
bra ®. Let 3Ï be a maximal abelian subspace of $. Then 3ïis a Cartan 
subalgebra of the symmetric space X. Let 31' be the set of all regular 
elements in 3t and let 3t+ be a fixed component (connected) in SI'. 
Then the set 3t+ is a Weyl chamber in the space 31. Let 31* be the dual 
space of the space 31. Then the space 3Ï* can be identified with the 
space 3Ï by means of the Killing form (, ) of ® in the usual manner. 
Let aGSI*. We set 

©« = {X G ®: [H, X] = a(H)X for all H G «}, 

da = dim ®«. Then a is said to be a root of the space X with respect to 
the Cartan subalgebra 31, if da>0. A root a is said to be positive if 
a(H) > 0 for all i?G3l+. Let P be the set of all positive roots of X with 
respect to 31. We set 

aeP aeP 

A = exp(3t); N = exp(Sft). 

Then we have the Iwasawa decomposition: G = KAN where A and 
N are connected commutative and nilpotent subgroups of G respec­
tively. 

Let aÇ~A. Then there exists a unique element JEZ*G3t such that 
a = exp H. We then write i ï = l n a. 

2. Some basic prerequisites. We now give some results from [4] 
1 This work was supported by the National Science Foundation through grant 
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which are instrumental for the formulation of the main theorems in 
the next section. 

A horocycle § in X is an orbit in the space X of a group of the form 
gNg~l, gGG. Let 2 be the set of all horocycles in X. Let M be the 
centralizer of A in K. Then the set 2 can be identified with the homo­
geneous space G/MN. Moreover the homogeneous space K/M can be 
identified with the set of all Weyl chambers contained in all maximal 
abelian subspaces of the space ty. 

Let x0= {K} be the origin in X and let £0 = N-x0 be the origin in 2 . 
Let £ £ 2 be arbitrary. Then the horocycle £ can be written as 

£ = ka£o 

where aÇîA is unique and kÇ:K is unique (mod M). Here the Weyl 
chamber kM is said to be normal to the horocycle £ and the element 
a£zA is said to be the complex distance from XQ to £. We set B = K/M. 
There the space B can be identified with the Furstenberg boundary 
B(G) (cf. [2]). 

Let x £ Z , &£B. Let £(#, b) be the horocycle with normal b and 
passing through the point x. Let a(x, b) be the complex distance from 
xo to f (x, b). Let H(x, b) = ln a(x, b) so that H{x, &)G2t. I t is shown 
in [4] that the elements H(x, b) play an essential role in defining the 
spherical Fourier transform of an arbitrary function ƒ G C*{X). 

3. Main results. Let Abe the Laplace-Beltramioperator in the space 
X and let c be some real number. We first give a complete description 
of the cone of all nonnegative solutions of the equation 

(1) A/ = cf. 

I t is shown in [5] that, for c< — (p, p), the equation (1) does not have 
a nonnegative solution (except the trivial solution ƒ =0) . Hence we 
consider only the case c e — (p, p). 

A nonnegative solution ƒ of (1) is said to be normalized if f(xo) = 1. 
A nonnegative solution ƒ of (1) is said to be minimal, if every non-
negative solution of (1) which does not exceed ƒ is a constant multiple 
of/. 

Let c e — (p, p). We set 

a » ( f f e 8 : ( f f , f f ) » c + <p, p>} and s £ « §f n 31c 

Let & £ £ , XGH^". We now define the function <£ô,x on X by the 
formula 

(2) fciX(*) = <>(X+P)<#C*.»> (* G X ) . 
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THEOREM l . The set of all normalized minimal solutions of the equa­
tion (1) coincide with the set of all f unctions 

The proof can be carried out by using the method of induction on 
the rank of the symmetric space X as in [5], 

THEOREM 2. A function f is a nonnegative solution of (1) if and only 
if f can be represented in the form 

(3) ƒ(*) - f +toiX(*)**(», X). 

Here \x is a finite positive Radon measure on J3X21* which is 
uniquely determined by ƒ. 

The proof is an immediate consequence of Theorem 1 and Cho-
quet's Theorem (cf. [ l]) . 

Let $)(X) be the algebra of all G-in variant differential operators 
on X. Then a function ƒ £ C™{X) is said to be semi-spherical, if ƒ is an 
eigen function of every differential operator D(~S)(X) and moreover 
satisfies the relation f(x0) = 1. Clearly a semi-spherical function ƒ is a 
spherical function on X if and only if ƒ is üT-invariant. 

THEOREM 3. A function f on X is a nonnegative semi-spherical f unc­
tion on X if and only if f can be represented in the form 

(4) f(x) = f Mx)dp(P). 

Here X£2t+ and ix is a finite positive Radon measure on B such that 
JBdiJ,(b) = l. Moreover the pair (/*, X) is determined uniquely by the 
function ƒ. 

THEOREM 4. A function f on X is a nonnegative spherical function on 
X if and only iff can be represented in the form 

(5) ƒ(*) = f <t>h*(x)db. 
J B 

Here X£§t+ and db is the unique K-mvariant positive measure on 
B such that fBdb = l. 

REMARK 1. This theorem can be considered as a special case of a 
more general result of Harish-Chandra [3] which gives the integral 
representation of an arbitrary complex-valued spherical function 
o n l . 



170 R. G. LAHA 

A function ƒ on X is said to be harmonic, if ƒ satisfies the equation 
A/=0. 

THEOREM 5. A function f on X is a bounded nonnegative harmonic 
function on X if and only if f can be represented in the form 

(6) ƒ(*) = f ew*<*>b»f(b)db. 
J B 

Here ƒ is a bounded nonnegative measurable function on B and is 
determined uniquely by ƒ almost everywhere on B. 

REMARK 2. Here the function ^purc*,*» j s t h e Poisson kernel and the 
formula (6) is the analog of Poisson integral formula for bounded 
nonnegative harmonic functions on symmetric spaces (cf. [2]). 
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