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1. Introduction. Let G be a connected semisimple Lie group with
a finite center and let K be a maximal compact subgroup of G and
let X=G/K be the homogeneous space of left cosets gK(g&EG)
of the group G with respect to the subgroup K. Then it is known that
a G-invariant Riemannian metric can be introduced in the space X
so that X becomes a Riemannian symmetric space of nonpositive
curvature. Let @ be the Lie algebra of G and let ® be the subalgebra
of ® corresponding to the subgroup K. Let P be the orthogonal com-
plement of & in @ with respect to the Killing form ( , ) of the alge-
bra @. Let A be a maximal abelian subspace of PB. Then ¥ is a Cartan
subalgebra of the symmetric space X. Let %’ be the set of all regular
elements in ¥ and let A+ be a fixed component (connected) in .
Then the set A+ is a Weyl chamber in the space U. Let %* be the dual
space of the space . Then the space A* can be identified with the
space U by means of the Killing form (, ) of @ in the usual manner.
Let ac*. We set

G.={XEG:[H, X] =a(@)X forall HE U},

d.=dim ®,. Then « is said to be a root of the space X with respect to
the Cartan subalgebra U, if d.>0. A root « is said to be positive if
a(H) >0 for all HEN*. Let P be the set of all positive roots of X with
respect to A. We set

%Zdaa; sﬁ:z@a

aEP a€P
A = exp (A); N = exp (N).

Then we have the Iwasawa decomposition: G=KAN where A and
N are connected commutative and nilpotent subgroups of G respec-
tively.

Let a&A. Then there exists a unique element HEY such that
a=exp H. We then write H=In a.

p

2. Some basic prerequisites. We now give some results from [4]
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which are instrumental for the formulation of the main theorems in
the next section.

A horocycle £ in X is an orbit in the space X of a group of the form
gNg=1, g€G. Let = be the set of all horocycles in X. Let M be the
centralizer of 4 in K. Then the set Z can be identified with the homo-
geneous space G/ MN. Moreover the homogeneous space K/ M can be
identified with the set of all Weyl chambers contained in all maximal
abelian subspaces of the space .

Let xo= { K} be the origin in X and let £,= N, be the origin in .
Let £¢E€E be arbitrary. Then the horocycle £ can be written as

E = kan

where aE€ 4 is unique and 2EK is unique (mod M). Here the Weyl
chamber kM is said to be normal to the horocycle £ and the element
a& 4 is said to be the complex distance from x, to £. We set B=K/ M.
There the space B can be identified with the Furstenberg boundary
B(G) (cf. [2]).

Let x€X, bEB. Let £(x, b) be the horocycle with normal b and
passing through the point x. Let a(x, b) be the complex distance from
xo to £(x, b). Let H(x, b) =In a(x, b) so that H(x, b)E. It is shown
in [4] that the elements H(x, b) play an essential role in defining the
spherical Fourier transform of an arbitrary function f&C;(X).

3. Mainresults. Let Abe the Laplace-Beltramioperator in the space
X and let ¢ be some real number. We first give a complete description
of the cone of all nonnegative solutions of the equation

(1) Af = ¢f.

It is shown in [5] that, for ¢ < — (p, p), the equation (1) does not have
a nonnegative solution (except the trivial solution f=0). Hence we
consider only the case c= — (p, p).

A nonnegative solution f of (1) is said to be normalized if f(x,) =1.
A nonnegative solution f of (1) is said to be minimal, if every non-
negative solution of (1) which does not exceed f is a constant multiple
of f.

Let c= —{p, p). We set

A= {HEA:(H, H = ¢+ {p, p)} and w=a"N9L.

Let b&€B, AEU}. We now define the function ¢, on X by the
formula

@ B1a(@) = ePEED)  (z € X).
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THEOREM 1. The set of all normalized minimal solutions of the equa-
tion (1) coincide with the set of all functions

{¢b.7\3 b e B, N\ & 2[:.}.

The proof can be carried out by using the method of induction on
the rank of the symmetric space X as in [5].

THEOREM 2. A function f is a nonnegative solution of (1) if and only
if f can be represented in the form

®) fa) = f JRLRCLTON

Here u is a finite positive Radon measure on BX%] which is
uniquely determined by f.

The proof is an immediate consequence of Theorem 1 and Cho-
quet’s Theorem (cf. [1]).

Let D(X) be the algebra of all G-invariant differential operators
on X. Then a function f& C*(X) is said to be semi-spherical, if f is an
eigen function of every differential operator DED(X) and moreover
satisfies the relation f(xo) =1. Clearly a semi-spherical function f is a
spherical function on X if and only if f is K-invariant.

THEOREM 3. A function f on X is a nonnegative semi-spherical func-
tion on X if and only if f can be represented in the form

@ f(x) = f ().

Here NEY* and u is a finite positive Radon measure on B such that

JBdu(d) =1. Moreover the pair (u, \) is determined uniquely by the
function f.

THEOREM 4. 4 function f on X is a nonnegative spherical function on
X if and only if f can be represented in the form

) f@) = f ().

Here A&U* and db is the unique K-invariant positive measure on
B such that [pdb=1.

REMARK 1. This theorem can be considered as a special case of a
more general result of Harish-Chandra [3] which gives the integral

representation of an arbitrary complex-valued spherical function
on X.
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A function f on X is said to be harmonic, if f satisfies the equation
Af=0.

THEOREM 5. A function f on X is a bounded nonnegative harmonic
Sfunction on X if and only if f can be represented in the form

(6) f@) = f ¢ @ (5) db.
B

Here 7 is a bounded nonnegative measurable function on B and is
determined uniquely by f almost everywhere on B.

REMARK 2. Here the function e @& js the Poisson kernel and the
formula (6) is the analog of Poisson integral formula for bounded
nonnegative harmonic functions on symmetric spaces (cf. [2]).
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