NONNEGATIVE EIGEN FUNCTIONS OF LAPLACE-BELTRAMI OPERATORS ON SYMMETRIC SPACES

BY R. G. LAHA¹

Communicated by G. D. Mostow, August 25, 1967

1. Introduction. Let G be a connected semisimple Lie group with a finite center and let K be a maximal compact subgroup of G and let X = G/K be the homogeneous space of left cosets $gK(g \in G)$ of the group G with respect to the subgroup K. Then it is known that a G-invariant Riemannian metric can be introduced in the space X so that X becomes a Riemannian symmetric space of nonpositive curvature. Let \mathfrak{G} be the Lie algebra of G and let \mathfrak{R} be the subalgebra of \mathfrak{G} corresponding to the subgroup K. Let \mathfrak{P} be the orthogonal complement of \Re in \Im with respect to the Killing form \langle , \rangle of the algebra &. Let A be a maximal abelian subspace of B. Then A is a Cartan subalgebra of the symmetric space X. Let \mathfrak{A}' be the set of all regular elements in $\mathfrak A$ and let $\mathfrak A^+$ be a fixed component (connected) in $\mathfrak A'$. Then the set \mathfrak{A}^+ is a Weyl chamber in the space \mathfrak{A} . Let \mathfrak{A}^* be the dual space of the space \mathfrak{A} . Then the space \mathfrak{A}^* can be identified with the space \mathfrak{A} by means of the Killing form \langle , \rangle of \mathfrak{G} in the usual manner. Let $\alpha \in \mathfrak{A}^*$. We set

$$\mathfrak{G}_{\alpha} = \{ X \in \mathfrak{G} : [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{A} \},$$

 $d_{\alpha} = \dim \mathfrak{G}_{\alpha}$. Then α is said to be a root of the space X with respect to the Cartan subalgebra \mathfrak{A} , if $d_{\alpha} > 0$. A root α is said to be positive if $\alpha(H) > 0$ for all $H \in \mathfrak{A}^+$. Let P be the set of all positive roots of X with respect to \mathfrak{A} . We set

$$\rho = \frac{1}{2} \sum_{\alpha \in P} d_{\alpha} \alpha; \qquad \mathfrak{N} = \sum_{\alpha \in P} \mathfrak{G}_{\alpha}$$

$$A = \exp(\mathfrak{N}); \qquad N = \exp(\mathfrak{N}).$$

Then we have the Iwasawa decomposition: G = KAN where A and N are connected commutative and nilpotent subgroups of G respectively.

Let $a \in A$. Then there exists a unique element $H \in \mathfrak{A}$ such that $a = \exp H$. We then write $H = \ln a$.

2. Some basic prerequisites. We now give some results from [4]

¹ This work was supported by the National Science Foundation through grant NSF-GP-6175.

which are instrumental for the formulation of the main theorems in the next section.

A horocycle ξ in X is an orbit in the space X of a group of the form gNg^{-1} , $g \in G$. Let Ξ be the set of all horocycles in X. Let M be the centralizer of A in K. Then the set Ξ can be identified with the homogeneous space G/MN. Moreover the homogeneous space K/M can be identified with the set of all Weyl chambers contained in all maximal abelian subspaces of the space \mathfrak{P} .

Let $x_0 = \{K\}$ be the origin in X and let $\xi_0 = N \cdot x_0$ be the origin in Ξ . Let $\xi \in \Xi$ be arbitrary. Then the horocycle ξ can be written as

$$\xi = ka\xi_0$$

where $a \in A$ is unique and $k \in K$ is unique (mod M). Here the Weyl chamber kM is said to be normal to the horocycle ξ and the element $a \in A$ is said to be the complex distance from x_0 to ξ . We set B = K/M. There the space B can be identified with the Furstenberg boundary B(G) (cf. [2]).

Let $x \in X$, $b \in B$. Let $\xi(x, b)$ be the horocycle with normal b and passing through the point x. Let a(x, b) be the complex distance from x_0 to $\xi(x, b)$. Let $H(x, b) = \ln a(x, b)$ so that $H(x, b) \in \mathfrak{A}$. It is shown in [4] that the elements H(x, b) play an essential role in defining the spherical Fourier transform of an arbitrary function $f \in C_c^{\infty}(X)$.

3. Main results. Let Δ be the Laplace-Beltrami operator in the space X and let c be some real number. We first give a complete description of the cone of all nonnegative solutions of the equation

$$\Delta f = cf.$$

It is shown in [5] that, for $c < -\langle \rho, \rho \rangle$, the equation (1) does not have a nonnegative solution (except the trivial solution f=0). Hence we consider only the case $c \ge -\langle \rho, \rho \rangle$.

A nonnegative solution f of (1) is said to be normalized if $f(x_0) = 1$. A nonnegative solution f of (1) is said to be minimal, if every nonnegative solution of (1) which does not exceed f is a constant multiple of f.

Let $c \ge -\langle \rho, \rho \rangle$. We set

$$\mathfrak{A}_{c} = \{ H \in \mathfrak{A} : \langle H, H \rangle = c + \langle \rho, \rho \rangle \}$$
 and $\mathfrak{A}_{c}^{+} = \mathfrak{A}^{+} \cap \mathfrak{A}_{c}$.

Let $b \in B$, $\lambda \in \mathfrak{A}_c^+$. We now define the function $\phi_{b,\lambda}$ on X by the formula

(2)
$$\phi_{b,\lambda}(x) = e^{(\lambda+\rho)(H(x,b))} \qquad (x \in X).$$

THEOREM 1. The set of all normalized minimal solutions of the equation (1) coincide with the set of all functions

$$\{\phi_{b,\lambda}:b\in B,\lambda\in\mathfrak{A}_c^+\}.$$

The proof can be carried out by using the method of induction on the rank of the symmetric space X as in [5].

THEOREM 2. A function f is a nonnegative solution of (1) if and only if f can be represented in the form

(3)
$$f(x) = \int_{B \times \mathbf{llc}} \phi_{b,\lambda}(x) d\mu(b,\lambda).$$

Here μ is a finite positive Radon measure on $B \times \mathfrak{A}_{\mathfrak{c}}^+$ which is uniquely determined by f.

The proof is an immediate consequence of Theorem 1 and Choquet's Theorem (cf. [1]).

Let $\mathfrak{D}(X)$ be the algebra of all G-invariant differential operators on X. Then a function $f \in C^{\infty}(X)$ is said to be semi-spherical, if f is an eigen function of every differential operator $D \in \mathfrak{D}(X)$ and moreover satisfies the relation $f(x_0) = 1$. Clearly a semi-spherical function f is a spherical function on X if and only if f is K-invariant.

THEOREM 3. A function f on X is a nonnegative semi-spherical function on X if and only if f can be represented in the form

(4)
$$f(x) = \int_{\mathcal{P}} \phi_{b,\lambda}(x) d\mu(b).$$

Here $\lambda \in \mathfrak{A}^+$ and μ is a finite positive Radon measure on B such that $\int_B d\mu(b) = 1$. Moreover the pair (μ, λ) is determined uniquely by the function f.

Theorem 4. A function f on X is a nonnegative spherical function on X if and only if f can be represented in the form

(5)
$$f(x) = \int_{B} \phi_{b,\lambda}(x) db.$$

Here $\lambda \in \mathfrak{A}^+$ and db is the unique K-invariant positive measure on B such that $\int_B db = 1$.

REMARK 1. This theorem can be considered as a special case of a more general result of Harish-Chandra [3] which gives the integral representation of an arbitrary complex-valued spherical function on X.

A function f on X is said to be harmonic, if f satisfies the equation $\Delta f = 0$.

THEOREM 5. A function f on X is a bounded nonnegative harmonic function on X if and only if f can be represented in the form

(6)
$$f(x) = \int_{R} e^{2\rho(H(x,b))} \hat{f}(b) db.$$

Here \hat{f} is a bounded nonnegative measurable function on B and is determined uniquely by f almost everywhere on B.

REMARK 2. Here the function $e^{2\rho(H(x,b))}$ is the Poisson kernel and the formula (6) is the analog of Poisson integral formula for bounded nonnegative harmonic functions on symmetric spaces (cf. [2]).

REFERENCES

- 1. G. Choquet, Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes, Seminaire Bourbaki, Exp. 139, (1956); C. R. Acad. Sci. Paris 203 (1956), 699-702.
- 2. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335-386.
- 3. Harish-Chandra, Spherical functions on a semi-simple Lie group. I, Amer. J. Math. 80 (1958), 241-310.
- 4. S. Helgason, A duality in integral geometry on symmetric spaces, Proc. U. S.-Japan Seminar in Differential Geometry, Kyoto, 1965.
- 5. F. I. Karpelevich, Geometry of geodesics and eigen functions of Laplace-Beltrami operators on symmetric spaces, Trudy Moskov. Mat. Obšč. 14 (1965), 48-185. (Russian)

THE CATHOLIC UNIVERSITY OF AMERICA