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1. Introduction. The 2-components of the stable homotopy groups 
^2n+i(CPI'CPn~l) of stunted complex projective space are here tabu­
lated, up to group extension, for 8 Si S13. For earlier work, including 
computation of these groups for i g 7, see [8], [2], [7], [3], [4], and 
[5] as corrected by [6]. See [ l ] for odd components. 

A result of Toda [8] relates these stable groups to the metastable 
homotopy groups of unitary groups as follows: Let OSKn. Then 
^2n+2t+x(CP/CPn~1)=W2n+2t+iU(n)t while there exists a commutative 
diagram with an exact row 

0 > Z > ir\n+2t{CP/CP"-1) -> TT2n+2tU(n) ~> 0 

(n + t)\ 

Z = H2n+2t(CP/CP^) 

in which h is the Hurewicz homomorphism. 
In view of Toda's formula the value of h is needed to deduce 

T2n+2tU(n). We include this data as (2.3) and give in (2.5) the order 
of the image of each element of the 2-component of Ts

2n+iS
2n in 

An^CP/CP^). 
Our basic method is the stable homotopy exact couple resulting 

from the standard cell filtration of CP/CPn~1. By naturality, differ­
entials in the resulting spectral sequence for CP/CPn~l may be com­
puted in the analogous spectral sequence for CP. The study in [ô] of 
this sequence for CP is the basis of the calculation here; a more de­
tailed description of the calculation will appear elsewhere. 

2. Results on homotopy groups. 

THEOREM 2.1. The 2-component of the torsion of the stable homotopy 
group rln+iiCP/CP"-1), 8 ^ * ^ 1 3 , is given by Table 2.2. 

In (2.2) nZ2 denotes the direct sum of n copies of Z2, while A ? B 
denotes a group satisfying an exact sequence 0-*A—>A ? B—>B—*0. 
Note that Z2+Z2 ? 2Z2 denotes Z2+A, where A = Z 2 ? 2Z2, rather 
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than 2Z% ? 2Z2. The multiple entry for i = 9 and w = l(8) should be 
read as Z4 except for n^9(32) and n = 2S(32). 

Modulo torsion, Ts
2n+i(CP/CPn"1) vanishes for i odd, but is infinite 

cyclic for i even. 

THEOREM 2.3. Let xn+k generate H2n+2k(CP/CPn~1). Let hn+k,kXn+k 
generate the image of the Hurewicz homomorphism h: it^n+vkiCP7CPn~l) 
~->H2n+2k(CP7'CPn~~l). Then, up to multiplication by an odd integer, 
for 1 S k S 6 hn+k,k is given by Table 2.4, while hn+7t7 = hn+7lQ. 

TABLE 2.4. 

»(8) 

0 

1 

2 

3 

4 

5 

6 

7 

1 

2 

1 

2 

1 

2 

1 

2 

2 

2 

8 

4 

4 

1 

8 

4 

2 

8 

4 

4 

1 

8 

4 

2 

9(16) 

10(16) 

11(32) 
27(64) 
59(64) 

8 

8 
4 

8 
4 

8 
4 
2 
1 

16 

16 

16 

16 

8(16) 

9(32) 
25(32) 

10(32) 
26(64) 
58(64) 

15(16) 

8 
4 

16 
8 
4 

8 
4 
2 
1 

32 

16 

32 

16 

16 
8 

16 
8(16) 8 

16 
9(32) 8 
25(64) 4 
57(128) 2 
121(128) 1 

128 

64 

64 

16 

64 
22(32) 32 
6(32) 16 

32 
23(32) 16 
39(64) 8 
7(64) 4 
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THEOREM 2.5. Let j8 be in the 2-component of Gt-, 0 < i ^ l 3 . Let 
j : S2n—>CPy'CPn~l be the inclusion. Then the order of j * j8Efl"2n+< 
• (CP/CPn~l) is given by Table 2.6. 

Nomenclature for elements of G, the stable homotopy of spheres, 
is as in [<>]. 

TABLE 2.6. 

r\a ye tfa m 

0 

1 

2 

3 

4 

5 

6 

2 

0 

2 

0 

2 

0 

2 

2 

0 

2 

0 

2 

0 

2 

8 

2 

2 

0 

4 

4 

2 

2 

2 
9(16) 

0 
10(16) 

0 
11(32) 
27(64) 
59(64) 

2 

2 

0 

16 

8 
16 

8 
16 

2 
4 
8 

16 

8 

4 

2 

2 

0 

2 

2 

2 

0 

2 

2 

0 

2 

2 

2 

0 

2 

2 

0 

2 

0 

2 

0 

2 

2 

0 

2 

0 

2 

0 

2 

2 

0 

0 

0 

2 

0 

0 

2 

0 
25(32) 

2 

0 

2 

0 

2 

2 2 8 
24(32) 4 

0 0 2 
2121(128) 4 

2 

0 

2 

0 

2 

2 2 

0 0 

2 4 

0 4 

2 0 
22(32) 4 
6(32) 8 

0 0 2 0 0 0 0 0 0 0 0 0 
15(16) 2 39(64) 2 

7(64) 4 
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We denote n dimensional Euclidean space by Rn and let Hm be m 
dimensional Hausdorff measure. 

It is well known that distributions of the type described in the title 
may alternately be characterized as corresponding to Hn measurable 
real valued functions ƒ with the following property: There exists a 
sequence of infinitely differentiable real valued functions fj on Rn such 
that 

lim f \fj-f\dHn = Q and liminf f \\Dfu\dH* < <*> 

for every compact subset K of Rn. The class of such functions ƒ is now 
widely regarded as the proper generalization to n > 1 of the class of 
those functions on R which are H1 equivalent to functions with finite 
total variation on every compact interval. However up to now there 
has been lacking an extension to n>\ of the basic classical results 
describing the continuity properties of functions with locally finite 
variation, namely that the set of points of discontinuity is countable 
and that one-sided limits exist everywhere. At first sight such an 

1 This work was supported in part by a research grant from the National Science 
Foundation. 
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