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Consider a lattice ordered algebra 4 with identity over the ra-
tionals @; 4 is called an f-ring if a \b=0, ¢ =0, implies that ca \b=ac
Ab=0. The maximal I-ideals I of 4 form a compact Hausdorff space
in the hull-kernel topology. If 4 is archimedean, i.e. a so called ®-
algebra, then it is known [5] that 4 is isomorphic to a subalgebra of
the partial algebra D(IM) of all continuous functions f: IN—R
U{ + = } which are finite on a dense open set. The fact that there is a
sizable theory of ®-algebras [5], [6], [10] with no counter part for the
more general class of f-rings may partly be due to the existence of this
representation, 4 CD(IN) for P-algebras, and a lack of such a repre-
sentation in the nonarchimedean case. This latter representation has
the defect that it is not onto. Even when D(IR) is an algebra, 4 need
not be all of D(M). Our objective is to give a representation which
not only corrects this defect, but also is applicable to a wider class of
f-rings. This new representation will show that the “f” in the term
“f-ring” is well justified.

Define E=U{4/M|MEM}; =: E-M, 7 (M)=A4/M. Each
aE A gives a map 4: M—E, 4(M)=a+ M. For any subset 4:C 4, set
A,={é¢|a€4,}. In order that A=A, the condition (A) will be as-
sumed throughout to hold

(A) NI = {o0}.

Appropriate topologies can be introduced in E and It making 7 into
a structure which generalizes sheaves and fiber bundles—a so called
field. (For a complete theory of fields, see [3].) The topologies on E
and I are unique in a certain well-defined sense. Let T'(IR, E) be the
l-group of all continuous cross sections ¢: IM—E with m oo the
identity on M. Then = is continuous and ACT(M, E) is an l-sub-
group. Let A*bethesubalgebra 4 *= {a €4 | |a| <r1,s0me0<rEQ}.
Then T(M, E)*= {c €T (M, E)| || <4 for some aEA*} is a convex
l-subgroup of T'(M, E).

Although for ease of exposition, 4 here is the additive group of a
ring, the multiplicative structure of 4 has not been used thus far.
The above construction will be carried out more generally for an
arbitrary l-group 4 and any set of prime subgroups 9 with 1M = {0}.
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If M is not normal in 4, then 4/M is not a group but merely a right
coset space.

Returning now to our previous assumptions, the algebra 4 is an
additive topological group with {a€4| |a| <71}, 0<rEQ, as zero
neighborhoods. It is possibly non-Hausdorff. If 4 is complete in this
uniform structure, it will be said to be uniformly closed. Under obvi-
ous pointwise operations, I'(M, E) is an l-group; 4 is said to be uni-
formly dense in T' (I, E) if for any ¢ ET' (I, E) and any 0<rE Q, there
is an €4 with |4—g| <r{. Since we are interested in cases when
A=T(M, E), or when at least 4 is uniformly dense in T'(IM, E),
besides the assumption (A) various of the following hypotheses will
have to be imposed:

(B) A¥*is closed under bounded inversion, i.e. if 1<aEA*, then
1/a€A.

(B’) A is closed under bounded inversion.

(C) A is uniformly closed.

Since A*C C(IM), the ring of real continuous functions, (A) and (C)
imply (B).

For representation purposes it is important that the algebra has
the property described in the next definition.

1. DEFINITION. A subset 4, of 4 contains positive bounded parti-
tions of identity on IN, if for any open cover M=U,U - - - UU,,
there are ¢;E€ 4, satisfying e;€NIM\U;; 05¢;=1 for j=1, .- -, n;
and 1=¢e,+4 - - +e,.

The proof of the next lemma is obtained by using the hull-kernel
topology together with the lattice properties of 4.

2. LEmMA. If conditions (A) and (B) hold, then A* contains positive
bounded partitions of identity on M.

It should be noted that 4 may be noncommutative even if 4* is
abelian.

3. LeMMA. If (A) and (B) hold, then the foliowing conditions are all
equivalent:

(i) A* is archimedean;

(ii) A4 ¢s Hausdorff;

(iii) E 4s Hausdorff.

The next proposition is not only needed to identify the fibers, but
it is also of independent interest.

4, PROPOSITION. Consider any totally ordered f-ring A such that every
1<a€A has a two sided inverse in A. Let I be the set of invertible ele-
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ments and define N as the set N={xCA| |x|<|i| all i€I}. Then:
(1) N is a maximal ideal of A which is an l-ideal.
(ii) 4/ N is a totally ordered division ring.

Very easily describable necessary and sufficient conditions for em-
bedding a rational f-algebra into a real f-algebra do not seem to be
available (see [7, p. 351, 2.9] and [11]).

5. CorROLLARY. If the f-ring A satisfies conditions (A) and (B’),
then each A/ M is a totally ordered division ring. Furthermore, A can be
embedded in an f-algebra over the reals.

The previous lemmas are now used to obtain the main theorem.

6. THEOREM. Suppose A is an f-algebra with identity over the ra-
tionals Q. Define A*={a€A| |a| <rl for some rEQ} and M as the
set of all maximal l-ideals of A. Assume that
(A) NM={o};
(B) 1<aEA*=1/aEA*.
Letw: E=U{4/M| MEM}-M, 4*, 4, T(M, E), and T (M, E)* be
as in the introduction.

(1) There is a field m where M has the hull-kernel topology. Each
A/ M, MEIN, is a totally ordered integral domain. There are l-isomor-
phisms

A— A4S TR, E), A* — A* C T(M, E)*.

(i) A is uniformly dense in T'(M, E).
Now assume conditions (A) and (C), where
(C) A is uniformly closed.
Then the following two assertions are valid:
(iii) A*=2A*=CcOMI=T'M, E)*; E is Hausdorf.
(iv) A=T@, E).

By using Proposition 4 and imposing more hypotheses, we can ob-
tain additional information in the above Theorem.

7. COROLLARY. With the same notation as in the previous theorem,
assume (A) and (B'):

(B") 1<a€A=1/aEA.
Then conclusions (i) and (ii) of the previous theorem hold. Furthermore,
each m~ (M), MEMW, is a totally ordered division ring.

A converse theorem can also be formulated. One starts from a field
x: E-I over a compact Hausdorff space whose stalks are totally
ordered integral domains. Then an appropriate subalgebra A, in
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ACT(I, E) is shown to be an f-algebra satisfying the algebraic hy-
potheses (A) and (B) of the previous theorem.
The full proofs of these results will appear elsewhere later.
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