REPRESENTATION OF F-RINGS

BY JOHN DAUNS1

Communicated by R. S. Pierce, October 16, 1967

Consider a lattice ordered algebra A with identity over the rationals Q; A is called an f-ring if $a \land b = 0$, $c \ge 0$, implies that $ca \land b = ac$ $\wedge b = 0$. The maximal *l*-ideals \mathfrak{M} of A form a compact Hausdorff space in the hull-kernel topology. If A is archimedean, i.e. a so called Φ algebra, then it is known [5] that A is isomorphic to a subalgebra of the partial algebra $D(\mathfrak{M})$ of all continuous functions $f: \mathfrak{M} \rightarrow \mathbb{R}$ $\bigcup \{\pm \infty\}$ which are finite on a dense open set. The fact that there is a sizable theory of Φ -algebras [5], [6], [10] with no counter part for the more general class of f-rings may partly be due to the existence of this representation, $A \subseteq D(\mathfrak{M})$ for Φ -algebras, and a lack of such a representation in the nonarchimedean case. This latter representation has the defect that it is not onto. Even when $D(\mathfrak{M})$ is an algebra, A need not be all of $D(\mathfrak{M})$. Our objective is to give a representation which not only corrects this defect, but also is applicable to a wider class of f-rings. This new representation will show that the "f" in the term "f-ring" is well justified.

Define $E = \bigcup \{A/M \mid M \in \mathfrak{M}\}$; $\pi \colon E \to \mathfrak{M}$, $\pi^{-1}(M) = A/M$. Each $a \in A$ gives a map $\hat{a} \colon \mathfrak{M} \to E$, $\hat{a}(M) = a + M$. For any subset $A_1 \subseteq A$, set $\hat{A}_1 = \{\hat{a} \mid a \in A_1\}$. In order that $A \cong \hat{A}$, the condition (A) will be assumed throughout to hold

(A) $\bigcap \mathfrak{M} = \{0\}.$

Appropriate topologies can be introduced in E and \mathfrak{M} making π into a structure which generalizes sheaves and fiber bundles—a so called *field*. (For a complete theory of fields, see [3].) The topologies on E and \mathfrak{M} are unique in a certain well-defined sense. Let $\Gamma(\mathfrak{M}, E)$ be the l-group of all continuous cross sections $\sigma \colon \mathfrak{M} \to E$ with $\pi \circ \sigma$ the identity on \mathfrak{M} . Then π is continuous and $\widehat{A} \subseteq \Gamma(\mathfrak{M}, E)$ is an l-subgroup. Let A* be the subalgebra A* $\equiv \{a \in A \mid |a| < r1$, some $0 < r \in Q\}$. Then $\Gamma(\mathfrak{M}, E)$ * $\equiv \{\sigma \in \Gamma(\mathfrak{M}, E) \mid |\sigma| < \widehat{a}$ for some $a \in A$ * $\}$ is a convex l-subgroup of $\Gamma(\mathfrak{M}, E)$.

Although for ease of exposition, A here is the additive group of a ring, the multiplicative structure of A has not been used thus far. The above construction will be carried out more generally for an arbitrary l-group A and any set of prime subgroups \mathfrak{M} with $\Omega \mathfrak{M} = \{0\}$.

¹ Research partially supported by NSF Grant GP6219.

If M is not normal in A, then A/M is not a group but merely a right coset space.

Returning now to our previous assumptions, the algebra A is an additive topological group with $\{a \in A \mid |a| < r1\}$, $0 < r \in Q$, as zero neighborhoods. It is possibly non-Hausdorff. If A is complete in this uniform structure, it will be said to be uniformly closed. Under obvious pointwise operations, $\Gamma(\mathfrak{M}, E)$ is an l-group; \widehat{A} is said to be uniformly dense in $\Gamma(\mathfrak{M}, E)$ if for any $\sigma \in \Gamma(\mathfrak{M}, E)$ and any $0 < r \in Q$, there is an $a \in A$ with $|a-\sigma| < r\widehat{1}$. Since we are interested in cases when $\widehat{A} = \Gamma(\mathfrak{M}, E)$, or when at least \widehat{A} is uniformly dense in $\Gamma(\mathfrak{M}, E)$, besides the assumption (A) various of the following hypotheses will have to be imposed:

- (B) A^* is closed under bounded inversion, i.e. if $1 < a \in A^*$, then $1/a \in A$.
 - (B') A is closed under bounded inversion.
 - (C) A is uniformly closed.

Since $A^* \subseteq C(\mathfrak{M})$, the ring of real continuous functions, (A) and (C) imply (B).

For representation purposes it is important that the algebra has the property described in the next definition.

1. DEFINITION. A subset A_1 of A contains positive bounded partitions of identity on \mathfrak{M} , if for any open cover $\mathfrak{M} = U_1 \cup \cdots \cup U_n$, there are $e_j \in A_1$ satisfying $e_j \in \cap \mathfrak{M} \setminus U_j$; $0 \le e_j \le 1$ for $j = 1, \dots, n$; and $1 = e_1 + \cdots + e_n$.

The proof of the next lemma is obtained by using the hull-kernel topology together with the lattice properties of A.

2. Lemma. If conditions (A) and (B) hold, then A^* contains positive bounded partitions of identity on \mathfrak{M} .

It should be noted that A may be noncommutative even if A^* is abelian.

- 3. LEMMA. If (A) and (B) hold, then the following conditions are all equivalent:
 - (i) A* is archimedean;
 - (ii) A is Hausdorff;
 - (iii) E is Hausdorff.

The next proposition is not only needed to identify the fibers, but it is also of independent interest.

4. PROPOSITION. Consider any totally ordered f-ring A such that every $1 < a \in A$ has a two sided inverse in A. Let I be the set of invertible ele-

ments and define N as the set $N = \{x \in A \mid |x| < |i| \text{ all } i \in I\}$. Then:

- (i) N is a maximal ideal of A which is an l-ideal.
- (ii) A/N is a totally ordered division ring.

Very easily describable necessary and sufficient conditions for embedding a rational f-algebra into a real f-algebra do not seem to be available (see [7, p. 351, 2.9] and [11]).

5. COROLLARY. If the f-ring A satisfies conditions (A) and (B'), then each A/M is a totally ordered division ring. Furthermore, A can be embedded in an f-algebra over the reals.

The previous lemmas are now used to obtain the main theorem.

- 6. THEOREM. Suppose A is an f-algebra with identity over the rationals Q. Define $A^* = \{a \in A \mid |a| < r1 \text{ for some } r \in Q\}$ and \mathfrak{M} as the set of all maximal l-ideals of A. Assume that
 - (A) $\bigcap \mathfrak{M} = \{0\};$
 - (B) $1 < a \in A^* \Rightarrow 1/a \in A^*$.

Let π : $E = \bigcup \{A/M \mid M \in \mathfrak{M}\} \rightarrow \mathfrak{M}$, \widehat{A}^* , \widehat{A} , $\Gamma(\mathfrak{M}, E)$, and $\Gamma(\mathfrak{M}, E)^*$ be as in the introduction.

(i) There is a field π where \mathfrak{M} has the hull-kernel topology. Each A/M, $M \in \mathfrak{M}$, is a totally ordered integral domain. There are l-isomorphisms

$$A \to A \subseteq \Gamma(\mathfrak{M}, E), \qquad A^* \to A^* \subseteq \Gamma(\mathfrak{M}, E)^*.$$

(ii) \hat{A} is uniformly dense in $\Gamma(\mathfrak{M}, E)$.

Now assume conditions (A) and (C), where

(C) A is uniformly closed.

Then the following two assertions are valid:

- (iii) $A^* \cong \hat{A}^* = C(\mathfrak{M}) \hat{1} = \Gamma(\mathfrak{M}, E)^*$; E is Hausdorff.
- (iv) $\hat{A} = \Gamma(\mathfrak{M}, E)$.

By using Proposition 4 and imposing more hypotheses, we can obtain additional information in the above Theorem.

- 7. COROLLARY. With the same notation as in the previous theorem, assume (A) and (B'):
 - (B') $1 < a \in A \Rightarrow 1/a \in A$.

Then conclusions (i) and (ii) of the previous theorem hold. Furthermore, each $\pi^{-1}(M)$, $M \in \mathfrak{M}$, is a totally ordered division ring.

A converse theorem can also be formulated. One starts from a field $\pi \colon E \to \mathfrak{M}$ over a compact Hausdorff space whose stalks are totally ordered integral domains. Then an appropriate subalgebra Λ , in

 $\Lambda \subseteq \Gamma(\mathfrak{M}, E)$ is shown to be an f-algebra satisfying the algebraic hypotheses (A) and (B) of the previous theorem.

The full proofs of these results will appear elsewhere later.

REFERENCES

- 1. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil Ci. 28 (1956), 41-69.
- 2. J. Dauns and K. H. Hofmann, The representation of biregular rings by sheaves, Math. Z. 91 (1966), 103-123.
 - 3. ——, Representation of rings by sections, Mem. Amer. Math. Soc. (to appear).
- 4. M. Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 553-565.
- 5. M. Henriksen and D. G. Johnson, Archimedean lattice ordered algebras, Fund. Math. 50 (1961), 73-97.
- 6. M. Henriksen, J. R. Isbell and D. G. Johnson, Residue class fields, Fund. Math. 50 (1961), 107-117.
- 7. J. R. Isbell, Embedding two ordered rings in one ordered ring. Part I, J. Algebra (3) 4 (1966), 341-364.
- 8. D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215.
- 9. D. G. Johnson and J. E. Kist, Prime ideals in vector lattices, Canad. J. Math. 14 (1962), 517-528.
- 10. P. Nanzetta, Maximal lattice-ordered algebras of continuous functions (to appear).
- 11. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.
 - 12. R. S. Pierce, Radicals in function rings, Duke Math. J. 23 (1956), 253-261.
- 13. ——, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70, 1967.

TULANE UNIVERSITY