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Consider a lattice ordered algebra A with identity over the ra-
tionals Q\A is called an/-wzg if a/\b = 0, c^O, implies that ca/\b~ac 
/\b = 0. The maximal /-ideals 99? of A form a compact Hausdorff space 
in the hull-kernel topology. If A is archimedean, i.e. a so called $-
algebra, then it is known [5] that A is isomorphic to a subalgebra of 
the partial algebra D(W) of all continuous functions ƒ: 99?—>R 
KJ { ± oo } which are finite on a dense open set. The fact that there is a 
sizable theory of ^-algebras [S], [6], [lO] with no counter part for the 
more general class of/-rings may partly be due to the existence of this 
representation, AQD^ffl) for ^-algebras, and a lack of such a repre­
sentation in the nonarchimedean case. This latter representation has 
the defect that it is not onto. Even when J9(99?) is an algebra, A need 
not be all of D(9D?). Our objective is to give a representation which 
not only corrects this defect, but also is applicable to a wider class of 
/-rings. This new representation will show that the "f" in the term 
"/-ring" is well justified. 

Define E = U{A/M\ METt} ; TT: £->9D?, W1(M)=A/M. Each 
aEA gives a map â: 9)?—>£, â(M) = a+M. For any subset AiQA, set 
Âi~ {â\aEAi}. In order that AÇ^Â, the condition (A) will be as­
sumed throughout to hold 

(A) n a w - {o}. 
Appropriate topologies can be introduced in E and 2JÎ making w into 
a structure which generalizes sheaves and fiber bundles—a so called 
field. (For a complete theory of fields, see [3].) The topologies on E 
and 5D? are unique in a certain well-defined sense. Let r(99?, E) be the 
/-group of all continuous cross sections <r: 90?—>E with xo<r the 
identity on 9ft. Then ir is continuous and ^4Cr(9K, E) is an /-sub­
group. Let A *be the subalgebra A*= {aÇzA\ \a\ O l , s o m e O O £ Q } . 
Then T(9W, £ ) * - {flrer(9W, E)\ \<r\ <â for some aEA*} is a convex 
/-subgroup of r(9ft, £ ) . 

Although for ease of exposition, A here is the additive group of a 
ring, the multiplicative structure of A has not been used thus far. 
The above construction will be carried out more generally for an 
arbitrary /-group A and any set of prime subgroups 90? with H93? = {0}. 
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If M is not normal in A, then A/M is not a group but merely a right 
coset space. 

Returning now to our previous assumptions, the algebra A is an 
additive topological group with {a£.4| \a\ <rl}, 0 O E Q , as zero 
neighborhoods. It is possibly non-Hausdorff. If A is complete in this 
uniform structure, it will be said to be uniformly closed. Under obvi­
ous pointwise operations, r(9ft, E) is an /-group; A is said to be uni­
formly dense inT(WltE) if for any <r£r(9ft, E) and any 0 O E Q , there 
is an aÇzA with } ^—cr| <r\. Since we are interested in cases when 
î̂ = ]T(9ft, E) f or when at least A is uniformly dense in r(9ft, E), 

besides the assumption (A) various of the following hypotheses will 
have to be imposed: 

(B) A* is closed under bounded inversion, i.e. if KaE-4* , then 
1/aEA. 

(B') A is closed under bounded inversion. 
(C) A is uniformly closed. 

Since -4*CC(9ft), the ring of real continuous functions, (A) and (C) 
imply (B). 

For representation purposes it is important that the algebra has 
the property described in the next definition. 

1. DEFINITION. A subset A\ of A contains positive bounded parti­
tions of identity on 9ft, if for any open cover 9ft = U\\J • • • U Z7», 
there are ejÇzA\ satisfying ey£n9ft\?7,*; Ogeyâl for j = l , • • • , n; 
and l = e i + • • • +en. 

The proof of the next lemma is obtained by using the hull-kernel 
topology together with the lattice properties of A. 

2. LEMMA. If conditions (A) and (B) hold, then A* contains positive 
bounded partitions of identity on 9ft. 

It should be noted that A may be noncommutative even if A * is 
abelian. 

3. LEMMA. If (A) and (B) hold, then the following conditions are all 
equivalent: 

(i) A* is archimedean; 
(ii) A is Hausdorff; 
(iii) E is Hausdorff. 

The next proposition is not only needed to identify the fibers, but 
it is also of independent interest. 

4. PROPOSITION. Consider any totally ordered f-ring A such that every 
KaÇzA has a two sided inverse in A. Let I be the set of invertible ele-
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ments and define N as the set N= {xÇzA \ \x \ < \i \ all i £ l } . Then: 
(i) N is a maximal ideal of A which is an l-ideal. 
(ii) A/N is a totally ordered division ring. 

Very easily describable necessary and sufficient conditions for em­
bedding a rational /-algebra into a real /-algebra do not seem to be 
available (see [7, p. 351, 2.9] and [ll]). 

5. COROLLARY. If the f-ring A satisfies conditions (A) and (B')> 
then each A/M is a totally ordered division ring. Furthermore, A can be 
embedded in an f-algebra over the reals. 

The previous lemmas are now used to obtain the main theorem. 

6. THEOREM. Suppose A is an f-algebra with identity over the ra-
tionals Q. Define A*= {a£zA \ \a\ <r\ for some r £ 0 } and 9W as the 
set of all maximal l-ideals of A. Assume that 

(A) n$Dt={0}; 
(B) KaEA*=*l/aEA*. 

Let*: E = \J{A/M\Mem}->m9 Â*, Â, r(9W, E), and r(Stt, £)* be 
as in the introduction. 

(i) There is a field T where 8)? has the hull-kernel topology. Each 
A/M, Af£9W, is a totally ordered integral domain. There are ^isomor­
phisms 

A-+AQ r(8tt, E), 4* -+ A* C r(2tt, £)*. 

(ii) Â is uniformly dense in T(W, E). 
Now assume conditions (A) and (C), where 

(C) A is uniformly closed. 
Then the following two assertions are valid: 

(iii) A*eéÂ* = C(m)î = Tfflt, £)*; E is Hausdorff. 
(iv) Â = T(m,E). 

By using Proposition 4 and imposing more hypotheses, we can ob­
tain additional information in the above Theorem. 

7. COROLLARY. With the same notation as in the previous theorem, 
assume (A) and (B') : 

(BO KaEA^l/aGA. 
Then conclusions (i) and (ii) of the previous theorem hold. Furthermore, 
each TT~-1(M), ikf£2)î, is a totally ordered division ring. 

A converse theorem can also be formulated. One starts from a field 
7r: £—»2W over a compact Hausdorff space whose stalks are totally 
ordered integral domains. Then an appropriate subalgebra A, in 
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Acr(9K, E) is shown to be an/-algebra satisfying the algebraic hy­
potheses (A) and (B) of the previous theorem. 

The full proofs of these results will appear elsewhere later. 
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