CONSTRUCTIONS ON LOW-DIMENSIONAL DIFFERENTIABLE MANIFOLDS

BY VALENTIN POÉNARU¹

Communicated by William Browder, May 29, 1967

1. This note contains the statements of three theorems on lowdimensional differentiable manifolds (dimensions 3 and 4). The proofs, which use techniques partly connected to [1], will appear elsewhere.

We denote by $M_n + (\phi_\lambda)$ the manifold obtained by adding the handle of index λ , $D_\lambda \times D_{n-\lambda}$, via the embedding ϕ_λ : $S_{\lambda-1} \times D_{n-\lambda}$ $\rightarrow \partial M_n$, to M_n . More generally, we shall use the following notation: If $P_{n-1} \subset S_{n-1} = \partial D_n$ is a bounded submanifold and ψ : $P_{n-1} \rightarrow M_n$ an embedding, we denote by $M_n + (\psi)$, the space $M_n \cup D_n$, where every $x \in P_{n-1}$ is identified to $\psi(x) \in M_n$. It is understood that, if $\psi(P_{n-1})$ $\subset \partial M_n$, then $M_n + (\psi)$ is a "usual" differentiable manifold, otherwise a "singular" one (see §2).

THEOREM 1. Let M_3 be a compact, differentiable, homotopy 3-disk. Then $M_3 \times I$ is diffeomorphic to D_4 with handles of index 2 and 3 added:

$$M_3 \times I = D_4 + (\phi_2^1) + \cdots + (\phi_2^p) + (\phi_3^1) + \cdots + (\phi_3^p).$$

Hence, one can eliminate the handles of index 1 of $M_3 \times I$ (compare with the similar procedure, in higher dimensions [2]).

In fact we obtain Theorem 1 from the slightly stronger:

THEOREM 1'. If M_3 is a compact, differentiable homotopy 3-disk, there exists an integer $p = p(M_3)$ such that:

$$(M_3 \# (S_2 \times I) \# \cdots \# (S_2 \times I)(p \text{ times})) \times I \\ = D_4 + (\phi_2^1) + \cdots + (\phi_2^p).$$

This together with some immersion theory, implies easily the main result from [1].

The next theorem is the main step in proving Theorem 1'. But in order to state it, we need some preparation.

2. We consider the 3-manifold $T_p = (S_1 \times D_2) \# (S_1 \times D_2) \# \cdots$ # $(S_1 \times D_2)$ (p times) and its double $2T_p = (S_1 \times S_2) \# (S_1 \times S_2)$ # $\cdots \# (S_1 \times S_2)$ (p times). (# means connected sum.) A family of p 2-by-2 disjoint embeddings $\phi_i: S_1 \rightarrow T_p$ $(i=1, \cdots, p)$ is called

¹ This research has been supported by NSF Grant GP-6299.

[March

"unknotted," if, after a diffeomorphism of T_p , the images become $(S_1 \times o) \cup (S_1 \times o) \cup \cdots \cup (S_1 \times o)$ (p times, o = center of D_2). Similarly, if $o \in S_2$, is some fixed point, a family of p, 2-by-2 disjoint embeddings $\psi_i: S_1 \rightarrow 2T_p$ $(i=1, \cdots, p)$ is called "unknotted" if after a diffeomorphism of $2T_p$, the images become $(S_1 \times o) \cup \cdots \cup (S_1 \times o)$ (p times). (The difference between the two notions is illustrated by the Figures 1a, 1b, where "knotted" embeddings $S_1 \rightarrow T_1$ are presented, such that the composite embeddings $S_1 \rightarrow T_1 \subset 2T_1$ are unknotted. Figure 1b contradicts, unfortunately, the obvious conjecture suggested by Figure 1a.)

FIGURE 1a

FIGURE 1b

We consider now (compact) 3-manifolds with singularities. These will be compact spaces V_3 which are everywhere (bounded) differentiable manifolds, except for a finite number of compact neighborhoods W, which admit descriptions of the following type: We consider two embeddings ϕ , $\psi: I \rightarrow S_2 = \partial D_3$, such that $\phi(I) \cap \psi(I)$ consists of exactly one point, with transversal intersection, and two thin tubular neighborhoods around them: Φ , $\Psi: I \times I \rightarrow S_2 = \partial D_3$. $I \times I$ is assimilated to $I \times I \times o \subset \partial(I \times I \times I) = \partial D_3$ and then W is our original D_3 (target of ϕ, ψ) with two other copies of D_3 added along Φ, Ψ :

$$W = D_{3} + (\Phi) + (\Psi) = D_{3} + (\Psi) + (\Phi).$$

 V_3 is "regular" except for a "singular" set $\sigma(V_3)$ which is a bounded 2-manifold, having as connected components various copies of D_2 .

We consider resolutions (of singularities) for V_3 , $\Pi: V'_3 \rightarrow V_3$ where V'_3 is a nonsingular 3-manifold, $\Pi^{-1}(x)$ has exactly 2 elements if $x \in int \sigma(V_3)$ and exactly 1 element if x is regular. (If $x \in \partial \sigma(V_3)$, as we shall see in a moment, $\Pi^{-1}(x)$ has one point in half the cases and two in the other half.) It is moreover understood that, if W is

as before, $\Pi^{-1}(W) = W'$ is obtained by cutting the $I \times I \times I$ corresponding to Φ , from $D_3 + (\Psi)$ along $\Phi^{-1}(\operatorname{Image} \Phi \cap \operatorname{Image} \Psi)$ (or the $I \times I \times I$ corresponding to Ψ , from $D_3 + (\Phi) \cdots$). So $W' = S_1 \times D_2$, and passing from W to W', Image $\Phi \cap \operatorname{Image} \Psi = I \times I$ "blows up" into $\beta = \Phi^{-1}(\operatorname{Image} \Phi \cap \operatorname{Image} \Psi) + \Phi \Phi^{-1}(\operatorname{Image} \Phi \cap \operatorname{Image} \Psi)$, diffeomorphic to $S_1 \times I$ (the first summand is in $I \times I \times I$, the other in $D_3 + (\Psi)$). We say that Φ (or Ψ) is *specified* in the resolution $\Pi = V'_3$ $\rightarrow V_3$. (One remarks that the two $I \times I \times I = D_3$ play a symmetric role in W, but cannot be interchanged with the original D_3 ; this is easily seen by looking at the sheaf of local homology groups along $\sigma(W) = \operatorname{Image} \Phi \cap \operatorname{Image} \Psi$.)

If Φ is specified in the resolution $\Pi: V'_3 \rightarrow V_3$, as above, there exists a canonical embedding $j: W' \rightarrow S_3$ which is uniquely determined (up to isotopy) by the requirements that j(W') be unknotted and $j(\beta)$ be contained in a nonsingular 2-disk of S_3 .

Let us consider the category \mathfrak{R} of resolutions $\Pi: V'_3 \rightarrow V_3$ (for all V_3 's) where the morphisms are given by commutative squares, having Π on the verticals and embeddings on the horizontals. Let us also consider the category \mathfrak{C} consisting of triples (M_4, j, M_3) where M_4 is a bounded differentiable 4-manifold, M_3 a (bounded) differentiable 3-manifold and $j: M_3 \rightarrow \partial M_4$ an embedding. Morphisms are again commutative squares having the j's on the verticals and embeddings on the horizontals. We have:

LEMMA. There exists a unique ("thickening") functor $\Theta: \mathbb{R} \to \mathbb{C}$ such that, if $\eta \in \mathbb{R}$ is $\Pi: V'_3 \to V_3$ then $\Theta(\eta) = (\Theta_4(\eta), j(\eta), V'_3)$ and the following requirements are fulfilled:

(a) If V_3 is nonsingular $(\sigma(V_3) = \emptyset)$ and η is the (only possible) resolution: identity: $V_3 \rightarrow V_3$, then $\Theta_4(\eta) = V_3 \times I$ and $j(\eta)$ is $V_3 \times o \subset \partial(V_3 \times I) = V_3 \times o + \partial V_3 \times I + V_3 \times 1$.

(b) Θ is compatible with the connected sum # and, more generally, let $V_3 = {}_{\circ}V_3 + {}_{1}V_3$, with ${}_{\circ}V_3 \cap {}_{1}V_3 = M_2 \subset V_3 - \sigma(V_3)$ (a compact 2-manifold). If $\eta = (\Pi: V'_3 \rightarrow V_3)$ is a resolution for V_3 , M_2 can be lifted to a unique $M'_2 \subset V'_3$, and η can be restricted to resolutions ${}_{\circ}\eta$ and ${}_{1}\eta$. By (a) and the functoriality of Θ there exist well-defined embeddings $M'_2 \times I$ $\subset \partial \Theta_4({}_{\circ}\eta)$ and $M'_2 \times I \subset \partial \Theta_4({}_{\circ}\eta)$ and $\Theta_4({}_{1}\eta)$ together along $M_2 \times I$, and $j(\eta)$ in a similar way from $j({}_{\circ}\eta), j({}_{1}\eta)$.

(c) $\Theta(W' \xrightarrow{\Pi} W) = (D_4, j: W' \rightarrow S_3 = \partial D_4, W')$ where W', W are as above, and j is the canonical embedding. (It is understood that $\Theta(\eta)$ is determined only up to "isomorphism.")

This lemma is implicit in [1].

1968]

3. We are interested in 3-manifolds with singularities V_3 , which admit the following description:

We consider T_{2p} and 2p differentiable embeddings $\phi^i: S_1 \rightarrow T_{2p}$ $(i=1, \dots, 2p)$ such that $\phi^i(S_1) \cap \phi^j(S_1) = \emptyset$ except for $\phi^{2k-1}(S_1) \cap \phi^{2k}(S_1)$ which consists of exactly 2 points, with transversal intersection $(k=1, \dots, p)$.

We remark that $\phi^{2k-1}(S_1) \cup \phi^{2k}(S_1)$ contains exactly 4 simple circuits of ∂T_{2p} and, for each $k = 1, \dots, p$, we consider a differentiable embedding $\psi^k \colon S \to \partial T_{2p} - \bigcup_1^{2k} \phi^i(S_1)$, "parallel" to one of these 4 circuits. We assume that $\psi^i(S_1) \cap \psi^j(S_1) = \emptyset$. We consider some very thin tubular neighborhoods: $\Phi^i, \Psi^j \colon S_1 \times I \to \partial T_{2p}$ $(i=1, \dots, 2p; j=1, \dots, p)$ of ϕ^i, ψ^j . $S_1 \times I$ is assimilated to $(\partial D_2) \times I \subset \partial(D_2 \times I)$, and hence we can add 3p times $D_2 \times I$ along the Φ and Ψ 's, to T_{2p} . We get in this way a 3-manifold with singularities

$$W_3 = T_{2p} + (\Phi^1) + \cdots + (\Phi^{2p}) + (\Psi^1) + \cdots + (\Psi^p).$$

We shall consider a resolution $\Pi: V'_3 \rightarrow V_3$ which specifies Φ^2 , Φ^4, \dots, Φ^{2p} .

We shall also consider, for each $k=1, \dots, p$ an embedding $\phi^{2k-1}: S_1 \rightarrow \text{int } T_{2p}$, very close to ϕ^{2k-1} , and "parallel" to it.

Finally we denote by \overline{T}_{2p} the 3-manifold:

$$\overline{T}_{2p} = T_{2p} + (\partial T_{2p}) \times I$$
 where $\partial T_{2p} = \partial T_{2p} \times o$.

With this we can state

THEOREM 2. Let M_3 be a compact homotopy 3-disk. Then, for some $p = p(M_3)$, the differentiable manifold:

$$M_{\bullet}^{p} = (M_{3} \# (S_{2} \times I) \# \cdots \# (S_{2} \times I)(p \text{ times})) \times I$$

= $(M_{3} \times I) \# (S_{2} \times D_{2}) \# \cdots \# (S_{2} \times D_{2})(p \text{ times})$

can be described as follows:

There exists a V_3 as above, for which the following requirement is fulfilled:

(γ) The 2p embeddings $S_1 \rightarrow 2\overline{T}_{2p}$:

$$S_1 \xrightarrow{\phi^{2k}, \bar{\phi}^{2k-1}} T_p \subset \overline{T}_{2p} \subset 2T_{2p} \qquad (k = 1, \cdots, p)$$

are unknotted.

Moreover,

$$\Theta_4(\Pi: V'_3 \rightarrow V_3) = M_4^p$$
 (diffeomorphism).

One remarks that the statement $M_3 = D_3$ is equivalent to $M_4^p = D_4$ # $(S_2 \times D_2) \# \cdots \# (S_1 \times D_2)$ (p times) (see [1]). This motivates

THEOREM 3. Let V_3 be the singular 3-manifold described above, but such that the requirement (γ) is replaced by the stronger requirement (Γ) : (Γ) The 2p embeddings $S_1 \rightarrow \overline{T}_{2p}$:

$$S_1 \xrightarrow{\phi^{2k}, \bar{\phi}^{2k-1}} T_{2p} \subset \overline{T}_{2p} \qquad (k = 1, \cdots, p)$$

are unknotted.

Then:

1968]

 $\Theta_4(\Pi: V_3' \to V_3) = D_4 \# (S_2 \times D_2) \# \cdots \# (S_2 \times D_2) (p \text{ times})$ (diffeomorphism).

BIBLIOGRAPHY

1. V. Poénaru, Sur les variétés tridimensionnelles ayant le type d'homotopie de S_{2} , Séminaire Ehresmann 6 (1963), 1-67.

2. S. Smale, Generalized Poincaré conjecture in dimensions >4, Ann. of Math. 74 (1961), 391-406.

NORTHEASTERN UNIVERSITY