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1. Introduction. The result to be proved in this article is that if u 
is a bounded harmonic function on a symmetric space X and XQ any 
point in X then u has a limit along almost every geodesic in X starting 
at XQ (Theorem 2.3). In the case when X is the unit disk with the non-
Euclidean metric this result reduces to the classical Fatou theorem 
(for radial limits). When specialized to this case our proof is quite 
different from the usual one; in fact it corresponds to transforming the 
Poisson integral of the unit disk to that of the upper half-plane and 
using only a homogeneity property of the Poisson kernel. The kernel 
itself never enters into the proof. 

2. Harmonic functions on symmetric spaces. Let G be a semisimple 
connected Lie group with finite center, K a maximal compact sub­
group of G and g and Ï their respective Lie algebras. Let B denote the 
Killing form of g and p the corresponding orthogonal complement of 
I in g. Let Ad denote the adjoint representation of G. As usual we 
view p as the tangent space to the symmetric space X = G/K a t the 
origin 0 = {K} and accordingly give X the G-invariant Riemannian 
structure induced by the restriction of B to pXp. Let A denote the 
corresponding Laplace-Beltrami operator. 

Fix a maximal abelian subspace ctCp a n d ' e t M denote the 
centralizer of a in K. If X is a linear function on a and Xs^O let gx 
= {XGg| [H, X] =X(H)Z for all HEa} ; X is called a restricted root 
if gx^O. Let a' denote the open subset of a where all restricted roots 
are 5^0. Fix a Weyl chamber a+ in a, i.e. a connected component of 
a'. A restricted root a is called positive (denoted a>0) if its values on 
ct+ are positive. Let the linear function p on a be determined by 
2p = ]C«>o (dim ga)oj and denote the subalgebras X)«>o 8« and 
]C«>o Ô-o of g by n and n respectively. Let N and F denote the cor­
responding analytic subgroups of G. 

By a Weyl chamber in p we understand a Weyl chamber in some 
maximal abelian subspace of p. The boundary of X is defined as the 
set B of all Weyl chambers in the tangent space p to X at 0; since this 
boundary is via the map kM—>Ad(k)a+ identified with K/M> which 
by the Iwasawa decomposition G = KAN equals G/MAN, this defi-

1 This work was supported by the National Science Foundation, GP 7477 and 
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nition of boundary is equivalent to Furstenberg's [2] (see also [ô] and 
[4]). In particular the group G acts transitively on B as well as on X, 
The two actions will be denoted (g, b)—>g(b) and (gt x)—>g-x 
(g£G» 6G#, xÇzX). Let db denote the unique i^-invariant measure 
on B normalized by JB db = 1. Then according to Furstenberg [2], the 
mapping ƒ—»# where 

(1) «(*•*) - fMb))db (g G G), 

is a bijection of the set Z,°°(J3) of bounded measurable functions on B 
onto the set of bounded solutions of Laplace's equation Au = 0 on X. 
The function u in (1) is called the Poisson integral of/. 

If gGG let k(g)ÇzK> H(g)(Eci be determined by g=>k(g) exp H(g)n 
(nÇzN). Observe that if gh denotes hghr1 for h G G then k(nm) —k(n)m, 
H(nm)==H(n) for wG27, rnÇîM. According to Harish-Chandra [3, 
Lemma 44], the mapping n-^k{n)M is a bijection of N onto a subset 
of K/M whose complement is of lower dimension and if ƒ is a con­
tinuous function on B, then 

(2) ff(b)db « f ƒ(*(*)Jf) exp (-2p(tf(*)))*! 

for a suitably normalized Haar measure dn on 27. If aÇzA we have 
a& (Â) MA N—k (na) MA N whence 

(3) a(k(n)M) = k(na)M 

so the action of a on the boundary corresponds to the conjugation 
»—»w° on 27. 

Let £1, • • • , Er be a basis of n such that each £»• lies in some 
g_a, say (j_«4. Since the map exp: n--*27 is a bijection we can, for 
each JTGct+, consider the function n—>\U\H defined as follows: If 
w = exp(X)i (liEi) (diÇzR) we put 

|w| / y = Max(|at-|
1K(H)) 

Since 

(4) tfex* tH = exp f 2 fl* exp(-a<(fl)OJSj 

we have 

(5) \n**»tH\H = e~'\n\H for « G 27, * G # , HEa*. 

For r > 0 let B^,, denote the set {wG27| | n\ H<T} and let VH,T de­
note the volume of BH,T (with respect to the Haar measure on F) . 
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LEMMA 2,1. Let f£.L">(B) and u the Poisson integral (1) off. Put 
F (fi) —fikirftM) for fïÇzN. Fix tioÇzN eind H^a+ and assume 

(6) f J F(n0ü) - F(fi0) I dn - » 0 
Vn.rJBHtr 

for r—>0. Then 

lim u(k(n0) exptH(-o)) = f(k(û0)M). 

PROOF. By the Iwasawa decomposition we can write no — k(no) 
-(aini)-1 (aiGA, niE:N) so 

u(k(n0) exp tR-o) = u(n0aifti exp /#•<?) = u(no exp tHainf^-^-o). 

But G ^ J V E : SO nlKÏ>(-tH) =a(t)n(t)k(t), each factor tending to e as 
/—>+ oo. If HtÇz<x is determined by 

exp /U* = exp tHaia(t) 

we have 

w(&(wo) exp fff-o) = u(n0n(ty%* tH* exp /#<•<>)• 

The function f(b)=f(n0n(t)**p tHt(b)) has Poisson integral w'(#) 
= w(wotë00exp '* ' •#) ; using (1) on u' and ƒ with g = exp JiJ* we get 
from (2) and (3) 

u(k(ft0) exp tH-o) -f(k(n0)M) 

- L ( * ( * o * ( 0 w tBtflexp tHt) ~ /tylo)) exp(-2p(#(#)))<ta 
J N 

so 

I «(*(«o) exp *#•<;) -f(k(fiQ)M) | 

(7) /• 
^ | | F(*Mexp tHt) ~ F(*0) | exp(~2p(F(w(/)~1»)))tó. 

Now if c > 0 let "Ne denote the "square" 

# . = j e x p f 2 «#E<)| 1*1 £c,Xgigr\. 

The integral on the right in (7) equals the sum 
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[_ | F(n0n**» «*«) - F(n0) | exp(-2p(H(n(t)~1n)))dn 
J Ne 

(8) 

ƒ--+ I _ I ^(>Wexp **') ~ F(*o) I exp(-2p(H(n(t)~1n)))dn. 

Since p(H(n))^0 for all râ£iV ([3, p. 287]) and since the mapping 
n—»wexp ̂  has Jacobian exp( — 2p(iî)) (cf. (4)) we see that 

g exp(2p(*£Q) f - « p „ , I Hm) - F(*«) | <tt. 

J_ I F(w0#
exp «*«) - F(fl0) | exp(-2p(H(n(t)-1n)))dn 

No 

(9) 
^ exD(Zj>u£f«n i e 

1\ o 

Now nGNc
exp 'H< if and only if 

w = exp(X aie-ai(tHt)Ei) where | <n\ ^ c 

and tHt—tH is bounded (for fixed rôo and H). It follows that 
^«p or, c ^ ^ {o r aU t ^ ^ 

d = d(H, wo, c) being a constant. But since the map exp: fl—>3T is 
measure-preserving it is clear that 

VE&T* = exp(-2p(fl)/)<*i / ^ 0 

where dt~di(Ht n0l c) is another constant. Also 

exp(2p(UJ*)) S exp(2p(tH))d2 

where dz(H, no) is a constant. Thus the right hand side of (9) can be 
majorized for all /èO: 

exp 2p(tHt) f | F(n0n) - F(n0) \ dn 
' Ne 

^dz f | F(n0n) - F(n0) \ dn 

where d and d$ are constants depending on Ht HQ and c. 
On the other hand, if || \\„ denotes the uniform norm on 7J the 

second term in (8) is majorized by 

2IHU f~ _ exP (~2p(H(n(t)-H)))dn 

( 1 1 ) -2\\F\\Jl- f _exp(-2p(ff(«)))^Y 
\ Ja(t)N0 / 
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Now given e>0we first choose c so large that 

2 |MU(l - ƒ_ exp(-2p(ff(*)))<to) < c/2; 

since fi(t)—*e for /-* + oo we can choose h such that n(t)'Nc'D^c/2 for 
Js=fi. Then the expression in (11) is <e/2 for J^h; by our assumption 
(6) we can choose h such that the right hand side of (10) is <e/2 
for t>t%. In view of (7) and (8) this proves the lemma. 

The next lemma shows that, for a fixed Hf the assumption of 
Lemma 2.1 actually holds for almost all ÛQ^W. 

LEMMA 2.2. Let F&L">(N) and fix i îGa+ . Then 

(12) lim I | F(n0n) - F(n0) \ dû = 0 
r->0 VH,TJ BHtr 

for almost all ÛQÇZÏÏ. 

The proof of this result is essentially in the literature: In [l] 
Edwards and Hewitt give all the necessary arguments for the case of 
a discrete sequence tending to 0 and everything they do remains 
trivially valid in the case r—>0. The result in the exact form required 
here was also proved by E. M. Stein independently of [l] (cf. his 
expository article [ó]). 

THEOREM 2.3. Let u be a bounded solution of Laplace s equation 
Aw = 0 on the symmetric space X. Then for almost all geodesies y(t) 
starting at o 

lim u(y(f)) exists. 
(13) <-*oo 

PROOF. Let 5+={HGa+| B(H, H) = l}. Then the mapping 
(kM,H)->Ad(k)H is a bijection of (K/M)XS+ onto a subset of the 
unit sphere S in p whose complement has lower dimension. Since 
dim(K/M-k(N)/M)<dim K/M the mapping (fi, H)->Ad(k(fi))H 
is a bijection of NXS+ onto a subset of S whose complement in S has 
lower dimension. If "NH denotes the set of wo for which (12) holds 
(with F(n)=f(k(n)M)) and if S0=Ui*€S+ Ad(k(NH))H it follows 
from the Fubini theorem that S—So is a null set. This concludes the 
proof. 

REMARKS, (i) If ƒ is continuous the limit relation 

lim u(k exp tH-o) = f(kM) (H G ct+, kM E K/M) 
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follows immediately from (1), (2) and (3), by use of the dominated 
convergence theorem. (See also [4, Theorem 18.3.2.]) In particular, 
u has the same limit along all geodesies from o which lie in the same 
Weyl chamber in p. 

(ii) In the case when X has rank one (dim a = 1) A. W. Knapp [5] 
has proved (13), even under the weaker assumption thatfÇ:Lx{B). 
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