CONJUGATIONS ON COMPLEX MANIFOLDS AND EQUIVARIANT HOMOTOPY OF MU^1

BY PETER S. LANDWEBER

Communicated by Pierre Conner, November 1, 1967

1. Introduction. Let $\rho: \Omega_*^U \to \mathfrak{N}_*$ denote the natural homomorphism from the stably complex bordism ring into the unoriented bordism ring. Milnor showed in [8] that the image of ρ consists of all squares $([M]_2)^2$ in \mathfrak{N}_* . Since \mathfrak{N}_* is a polynomial algebra over Z_2 , an epimorphism $R: \Omega_{2n}^U \to \mathfrak{N}_n$ is defined by the condition that $R^2 = \rho$. Milnor made use of the following result of Conner and Floyd [3, p. 64]: if τ is a conjugation on a closed almost complex 2n-manifold M, then the fixed point set F(M) is an n-manifold and $[M]_2 = ([F(M)]_2)^2$ in \mathfrak{N}_{2n} , i.e. $R([M]) = [F(M)]_2$. Hence, if a conjugation is present we may regard R as "passage to the fixed point set." We shall develop a bordism theory in which such a "fixed point homomorphism" is a natural feature.

From the homotopy point of view, Ω^U_* coincides with the (stable) homotopy $\pi_*(MU)$ of the Milnor spectrum MU [7]. In fact, the Thom spaces MU(n) carry involutions making it possible to define equivariant homotopy groups $\Omega^U_{p,q} = \pi_{p,q}(MU)$. The details follow.

Give C^m the involution $(z_1, \dots, z_m) \mapsto (\bar{z}_1, \dots, \bar{z}_m)$. Then the Grassmannian $G_n(C^m)$ of n-planes in C^m inherits an involution, as does the classifying space $BU(n) = G_n(C^\infty)$. Moreover, the universal complex n-plane bundle $E^n \to BU(n)$ inherits an involution which makes E^n a real vector bundle over the real space BU(n) in the sense of Atiyah [1]. Thus $MU(n) = B(E^n)/S(E^n)$ is endowed with an involution fixing the base point. Notice that the corresponding fixed point sets are R^m , $G_n(R^m)$, BO(n) and MO(n).

Following Atiyah [1] let $B^{p,q}$ and $S^{p,q}$ denote the unit ball and unit sphere in a Euclidean space $R^{p,q}$ of dimension p+q carrying an orthogonal involution with fixed point set R^q . If X is a space with involution and fixed base point *, let $\pi_{p,q}(X)$ denote the set of equivariant homotopy classes of maps $(B^{p,q}, S^{p,q}) \rightarrow (X, *)$. For $q \ge 2$, $\pi_{p,q}(X)$ is an abelian group.

There are equivariant suspension maps i_n : $MU(n) \wedge (B^{1,1}/S^{1,1}) \rightarrow MU(n+1)$, and so homomorphisms

$$\pi_{p+k,q+k}(MU(k)) \to \pi_{p+k+1,q+k+1}(MU(k+1)).$$

¹ This research was supported in part by National Science Foundation Grant GP-6567.

Hence we may define

(1.1)
$$\Omega_{p,q}^{U} = \pi_{p,q}(MU) = \lim_{k \to \infty} \pi_{p+k,q+k}(MU(k))$$

for integers p, q. There is a forgetful homomorphism ψ , and a fixed point homomorphism ϕ obtained by restriction to the fixed point sets:

$$\Omega_{p+q}^{U} \xleftarrow{\psi} \Omega_{p,q}^{U} \xrightarrow{\phi} \mathfrak{N}_{q}.$$

We shall state a number of results about the groups $\Omega_{p,q}^U$ and the homomorphisms ψ and ϕ . The results of [5], on fixed point free conjugations and the existence of equivariant maps are a by-product of this study. A similar investigation of equivariant stable stems has been made by Bredon [2].

2. The exact sequence. The inclusions $R^{p+k,q+k} \rightarrow R^{p+k+1,q+k}$ give rise to a homomorphism χ so that the diagram

$$\Omega_{p+1,q}^{U} \xrightarrow{\chi} \Omega_{p q}^{U}$$

$$\phi \searrow \qquad \swarrow \phi$$

$$\Omega_{p q}^{U}$$

is commutative. The image of χ consists of elements of order 2. As in [6] there is an exact sequence

$$(2.1) \cdots \to \Omega_{p+1,q}^{U} \xrightarrow{\chi} \Omega_{p,q}^{U} \xrightarrow{\psi} \Omega_{p+q}^{U} \xrightarrow{\omega} \Omega_{p+1,q-1}^{U} \to \cdots$$

It follows from the exact sequence of [6] that $\phi: \Omega_{p,q}^U \to \Re_q$ is an isomorphism for p+q<0; this gives a basis for induction on p+q.

Theorem 2.2. $\Omega^U_{p,q}$ is a finitely generated abelian group in which all torsion is of order 2. The torsion subgroup is the kernel of $\psi: \Omega^U_{p,q} \to \Omega^U_{p+q}$.

3. Transversality. Given an equivariant map f from $(B^{p+k,q+k}, S^{p+k,q+k})$ into (MU(k), *), is f equivariantly homotopic to a map g which is transversal to $BU(k) \subset MU(k)$? (As is customary, we approximate BU(k) and $MU(k) - \{*\}$ by smooth manifolds.) That this is not generally true follows from the fact that $\phi \colon \Omega^U_{p,q} \to \Re_q$ is an isomorphism for p+q < 0.

THEOREM 3.1. If $p \ge q$, each element of $\Omega_{p,q}^U$ is represented by a map $f: (B^{p+k,q+k}, S^{p+k,q+k}) \rightarrow (MU(k), *)$ which is transversal to $BU(k) \subset MU(k)$.

This follows by examination of a more general situation, in the

category of smooth manifolds with involution and smooth equivariant maps. Let $f: M \rightarrow W$ be given, and let V be a closed invariant submanifold of W. We assume that each fixed point set F(M), F(V), F(W) is of uniform dimension. Put $m = \dim M$, $m' = \dim F(M)$, etc.

LEMMA 3.2. If $(m-2m')+(v-2v') \ge (w-2w')$, f is equivariantly homotopic to a map g which is transversal to V.

COROLLARY 3.3. The diagram

$$\begin{array}{ccc}
\Omega_{n,n}^{U} & \stackrel{\psi}{\longrightarrow} \Omega_{2n}^{U} \\
\phi \searrow & \swarrow R \\
\mathfrak{N}_{n}
\end{array}$$

is commutative.

COROLLARY 3.4. The homomorphism $\phi: \Omega_{p,q}^U \to \mathfrak{N}_q$ is onto if $p \leq q$ and is zero if p > q.

The sequence

$$(3.5) 0 \to \Omega_{n+1,n}^U \xrightarrow{\chi} \Omega_{n,n}^U \xrightarrow{\psi} \Omega_{2n}^U \to 0$$

is exact. I conjecture that $\Omega_{n+1,n}^U = 0$ for all n, and have verified this for $n \le 4$.

4. The spectral sequence. We do not have a complete description of the groups $\Omega_{p,q}^U$. In particular, the extent of the torsion and the image of ψ are not known in general. The difficulties are measured by the spectral sequence of the bigraded exact couple (2.1), which we now write as

$$\cdots \to \Omega_{p+1,q}^U \xrightarrow{\chi} \Omega_{p,q}^U \xrightarrow{\psi} E_{p,q}^1 \xrightarrow{\omega} \Omega_{p+1,q-1}^U \to \cdots$$

where $E^1_{p,q} = \Omega^U_{p+q}$. The differential d^r : $E^r_{p-r,q+1} \rightarrow E^r_{p,q}$ of the spectral sequence $\{E^r_{p,q}\}$ (r>0) arises from the diagram

$$\Omega_{p,q}^{U} \xrightarrow{\psi} E_{p,q}^{1}$$

$$\downarrow \chi^{r-1}$$

$$E_{p-r,q+1}^{1} \xrightarrow{\omega} \Omega_{p-r+1,q}^{U}.$$

We are able to determine d^1 and d^3 ($d^2=0$), and so reach the following conclusions.

THEOREM 4.1. (a) If $p \not\equiv q \mod 4$, $\Omega_{p,q}^U$ is finite; (b) if $p-q \equiv 4 \mod 8$, $\psi \colon \Omega_{p,q}^U \to \Omega_{p+q}^U$ has image $2\Omega_{p+q}^U$; (c) if $p \equiv q \mod 8$, the image of ψ contains $2\Omega_{p+q}^U + [CP(1)]\Omega_{p+q-2}^U$.

COROLLARY 4.2. If $p \equiv q \mod 4$, $\Omega_{p,q}^U$ has the same rank as Ω_{p+q}^U .

The differential d^1 : $E^1_{p-1,q+1} \to E^1_{p,q}$ is zero if $p \not\equiv q \mod 4$, and is multiplication by 2 otherwise. This is proved with K-theory and KR-theory characteristic numbers [4], [9]; notice that the composition $\widetilde{K}(S^n)^r \to [KO]^r(S^n) \stackrel{c}{\to} \widetilde{K}(S^n)$ is zero if $n \not\equiv 0 \mod 4$, and is multiplication by 2 otherwise. Thus $E^2_{p,q} \cong \Omega^U_{p+q} \otimes Z_2$ if $p \equiv q \mod 4$, otherwise $E^2_{p,q} = 0$. Moreover, $E^3 = E^2$. With the help of characteristic numbers, we show that d^3 : $E^3_{p-3,q+1} \to E^3_{p,q}$ is multiplication by [CP(1)] if $p \equiv q \mod 8$, otherwise $d^3 = 0$. Then $E^7 \cong \cdots \cong E^4$; I conjecture that d^7 : $E^7_{p-7,q+1} \to E^7_{p,q}$ is multiplication by the class of the quadric Q^6 if $p \equiv q \mod 16$, otherwise d^7 is zero.

REFERENCES

- 1. M. F. Atiyah, K-theory and reality, Quart. J. Math. 17 (1966), 367-386.
- 2. G. E. Bredon, Equivariant stable stems, Bull. Amer. Math. Soc. 73 (1967), 269-273.
- 3. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, Berlin, 1964.
- 4. ——, The relation of cobordism to K-theories, Springer Lecture Notes, Vol. 28, Springer, Berlin, 1966.
- 5. P. S. Landweber, Fixed point free conjugations on complex manifolds, Ann. Math. (to appear).
- 6. J. Levine, Spaces with involution and bundles over Pⁿ, Amer. J. Math. 85 (1963), 516-540.
- 7. J. W. Milnor, On the cobordism ring and a complex analogue, Amer. J. Math. 82 (1960), 505-521.
- 8. ——, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
- 9. R. E. Stong, Relations among characteristic numbers. I, Topology 4 (1965), 267-281.

University of Virginia