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1. Introduction. Let p: 0*—»9't* denote the natural homomorphism 
from the stably complex bordism ring into the unoriented bordism 
ring. Milnor showed in [8] that the image of p consists of all squares 
([ikf]2)2 in 9Î*. Since Sft* is a polynomial algebra over Z2, an epi-
morphism R: 0^—>9lw is defined by the condition that R2=p. Milnor 
made use of the following result of Conner and Floyd [3, p. 64]: if r 
is a conjugation on a closed almost complex 2w-manifold M, then the 
fixed point set F(M) is an w-manifold and [M]2= ([F(M)]2)

2 in 
5ft2n, i.e. J?([Af]) = [F(M)]<L. Hence, if a conjugation is present we may 
regard R as "passage to the fixed point set." We shall develop a 
bordism theory in which such a "fixed point homomorphism" is a 
natural feature. 

From the homotopy point of view, 12* coincides with the (stable) 
homotopy TT*(MU) of the Milnor spectrum MU [7]. In fact, the 
Thorn spaces MU(n) carry involutions making it possible to define 
equivariant homotopy groups Q%,Q = irp,q(MU). The details follow. 

Give Cm the involution (zi, • • • , zm)^(z\y • • • , zm). Then the 
Grassmannian Gn(C

m) of w-planes in Cm inherits an involution, as does 
the classifying space BU(n) =GW(C°°). Moreover, the universal com­
plex w-plane bundle En—>B V(n) inherits an involution which makes 
En a real vector bundle over the real space BJJ(n) in the sense of 
Atiyah [ l ] . Thus MU(n)=B(En)/S(En) is endowed with an involu­
tion fixing the base point. Notice that the corresponding fixed point 
sets are Rm, Gn{Rm), B0(n) and MO{n). 

Following Atiyah [ l ] let Bp>q and Sp>q denote the unit ball and 
unit sphere in a Euclidean space Rp'q of dimension p+q carrying an 
orthogonal involution with fixed point set Rq. If X is a space with 
involution and fixed base point *, let Tp,q(X) denote the set of 
equivariant homotopy classes of maps (Bp'q, Sp>q)-+(X, *). For 
<Z^2, 7rPtQ(X) is an abelian group. 

There are equivariant suspension maps in: MU(n)A(Bltl/Sltl) 
-*MU(n + l)> and so homomorphisms 

Wp+k,q+k(MU(k)) ~*Tp+k+l,q+k+l(MU(k + 1)). 

1 This research was supported in part by National Science Foundation Grant 
GP-6567. 
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Hence we may define 

(1.1) o£itf = TP)Q(MU) = lim Tp+k,q+k(MU(k)) 

for integers p, q. There is a forgetful homomorphism x//, and a fixed 
point homomorphism </> obtained by restriction to the fixed point sets: 

u $ u <t> 
\lp-\.q < *"p,q JCq> 

We shall state a number of results about the groups fl^fl and the 
homomorphisms \f/ and $. The results of [5], on fixed point free con­
jugations and the existence of equivariant maps are a by-product 
of this study. A similar investigation of equivariant stable stems has 
been made by Bredon [2]. 

2. The exact sequence. The inclusions Rp+k>*+*-*Rp+k+l><i+k give 
rise to a homomorphism x s o that the diagram 

u X u 

is commutative. The image of x consists of elements of order 2. As in 
[ó] there is an exact sequence 

u x u & u & u 
(2.1) • • • —» &p+l,q —» £lPfq —» Op+g —> Op-|_l,g_l — » . • • . 

I t follows from the exact sequence of [6] t h a t t f r Q ^ - ^ , is an iso­
morphism for p+q<0; this gives a basis for induction on p+q. 

THEOREM 2.2. fl^ff is a finitely generated abelian group in which all 
torsion is of order 2. The torsion subgroup is the kernel of \[/: £^ö—>î2j+fl. 

3. Transversality. Given an equivariant map ƒ from (£*+*.«+*, 
Sp+k'q+k) into (MU(k), *), is ƒ equivariantly homotopic to a map g 
which is transversal to BU(k)dMU(k)? (As is customary, we ap­
proximate BU(k) and MU(k)— {*} by smooth manifolds.) That this 
is not generally true follows from the fact that <j>: O^-^Sftg is an 
isomorphism for p+q<0. 

THEOREM 3.1. If p^q, each element ofQ%)Q is represented by a map 
ƒ: {B/p+k^+k

y Sp+k>«+k)--+(MU(k), *) which is transversal to BU(k) 
CMU(k). 

This follows by examination of a more general situation, in the 
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category of smooth manifolds with involution and smooth equivari-
ant maps. Let ƒ: M—>W be given, and let F be a closed invariant 
submanifold of W. We assume that each fixed point set F(M)t F(V), 
F(W) is of uniform dimension. Put w = dim My m' = dim F(M), etc. 

LEMMA 3.2. If {m — 2m')-{-(v-'2vf)'*t{w — 2wr)y ƒ is equivariantly 
homotopic to a map g which is transversal to V. 

COROLLARY 3.3. The diagram 

u ^ u 

is commutative. 

COROLLARY 3.4. The homomorphism <fi: 0 f̂l—>yiq is onto if p^q 
and is zero if p>q. 

The sequence 

u X u *P u 
(3.5) 0 -» Qn+l,n -» &n,n ~> 02w ~> 0 

is exact. I conjecture that 0^+i,w = 0 for all n, and have verified this 
for n ^ 4. 

4. The spectral sequence. We do not have a complete description 
of the groups fl^fl. In particular, the extent of the torsion and the 
image of \{/ are not known in general. The difficulties are measured 
by the spectral sequence of the bigraded exact couple (2.1), which we 
now write as 

u X u t l co u 
• • • > \lp+i)Çi > ilPtq » £Lp,q > ilp+itq—i > • • • 

where .E* >ff == 0^+fl. The differential dr: £p.f>jr+1-->£^i(l of the spectral 
sequence {-fî^} (r>0) arises from the diagram 

l x r ~ l 

1 CO U 
&p—r,q+l * *lp—r+ltq* 

We are able to determine d1 and dz (d2 = 0), and so reach the fol­
lowing conclusions. 
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THEOREM 4.1. (&)Ifp^q mod 4,0%^ is finite; (b) if p — g = 4 mod 8, 
\p: 0^a~>öJ^ff has image 2Çlp+a; (c) ifp^q mod 8, the image of \p contains 
2Q? + ;+[CP( l ) ]0? + i . a . 

COROLLARY 4.2. If p^q mod 4, fl^ff tes tóe same rank as Q%+r 

The differential d1: £j^lt(Z+1—>Ejt(Z is zero if p^q mod 4, and is 
multiplication by 2 otherwise. This is proved with i£-theory and 
ICi?-theory characteristic numbers [4], [9]; notice that the composi­
tion K(Sn)r-> [KO]~(Sn)S>K(Sn) iszeroif n ^ 0 mod 4, and is multiplica­
tion by 2 otherwise. Thus £^ff=Q^+fl®Z2 if £ = £ mod 4, otherwise 
£pifl = 0. Moreover, EZ~E2. With the help of characteristic numbers, 
we show that ds: £p_3)ff+1~->E^a is multiplication by [CP(1)] if p^q 
mod 8, otherwise d3 = 0. Then E7^. • • • ^ £ 4 ; I conjecture that 
d7: E7

p_7tg+1—>El)ü is multiplication by the class of the quadric Q6 

if p = q mod 16, otherwise d7 is zero. 
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