REPRESENTATION OF NONNEGATIVE CONTINUOUS FUNCTIONS ON PRODUCT SPACES

BY HERMAN RUBIN ${ }^{1}$
Communicated by Bertram Yood, October 19, 1967

The purpose of this note is to show that a nonnegative continuous function on a locally compact σ-compact product space is a countable sum of products of factor functions. That is, if f is a nonnegative continuous function on $X_{\alpha \in A} X_{\alpha}$, there exist nonnegative continuous functions $g_{\alpha i}$, such that for each i, only finitely many $g_{\alpha i}$ are not identically 1 , and for all x,

$$
f(x)=\sum_{i} \prod_{\alpha} g_{\alpha i}\left(x_{\alpha}\right)
$$

Since we are dealing with continuous real-valued functions, we may assume the spaces are completely regular. By local compactness and σ-compactness, we can reduce the problem to a countable number of representations on products of compact spaces. Each of these spaces can be represented as a closed subspace of a product of cubes. Then the function f^{*} defined on the product of the embeddings can be extended to the product of the cubes. Consequently, it is sufficient to prove the theorem when all X_{α} are $[0,1]$.

Define the function

$$
\begin{align*}
h(x) & =1-|x|, & & |x|<1 \tag{1}\\
& =0, & & |x| \geqq 1 .
\end{align*}
$$

Then if $0 \leqq x \leqq 1$,

$$
\begin{equation*}
1=\sum_{i=0}^{n} h(n x-i) . \tag{2}
\end{equation*}
$$

Let us proceed inductively as follows. Let $f_{0}=f$, and when f_{i} is defined, $M_{i}=\max _{x} f_{i}(x)$. Then there exist $\alpha_{1}, \cdots, \alpha_{q}, n$ such that $\left|f_{i}(x)-f_{i}(y)\right|<M_{i} / 4$ whenever $\left|x_{\alpha_{t}}-y_{\alpha_{t}}\right|<1 / n, t=1, \cdots, q$.

Now let

$$
\begin{equation*}
k_{i}(x)=\sum_{j_{1}=0}^{n} \cdots \sum_{j_{q}=0}^{n} \prod_{t=1}^{q} h\left(n x_{\alpha_{t}}-j_{t}\right) \max \left(0, f_{i}\left(u_{j}\right)-\frac{1}{4} M_{i}\right) \tag{3}
\end{equation*}
$$

[^0]where $u_{j_{\alpha}}=j_{\alpha} / n, \alpha=1, \cdots, q$, and $u_{j_{\alpha}}$ is arbitrary, say 0 , otherwise.
We observe the following:
\[

$$
\begin{equation*}
\sum_{j_{i}=0}^{n} \cdots \sum_{j_{q}=0}^{n} \prod_{t=1}^{q} h\left(n x_{\alpha_{t}}-j_{t}\right)=1 \tag{4}
\end{equation*}
$$

\]

All terms in (4) are nonnegative.
(6) If the j th term in (4) is positive, its coefficient in (3) lies between $f(x)-\frac{1}{2} M_{i}$ and $f(x)$.

Thus

$$
\begin{equation*}
f_{i+1}(x)=f_{i}(x)-k_{i}(x) \leqq \frac{1}{2} M_{i} \tag{7}
\end{equation*}
$$

Consequently, we may continue the process inductively and

$$
\begin{equation*}
f(x)=\sum_{i=0}^{\infty} k_{i}(x), \tag{8}
\end{equation*}
$$

which is of the desired form.
Michigan State University

[^0]: ${ }^{1}$ Partially supported by Contract No. Nonr-2587(02) Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

