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In the present note some new properties of selfadjoint operators are 
given. These results came to light in our investigation of Weinstein's 
new maximum-minimum theory of eigenvalues [ l ] , [2], but may be 
of some general interest by themselves, since they do not refer ex
plicitly to eigenvalues. For the theory of unbounded operators, as 
used here, see the recent book of Goldberg [3]. 

Let T be any selfadjoint linear operator on a dense subspace 3) of 
a Hubert space 3C. Let <y be any closed subspace of 3C, let Y be the 
projection operator onto % and let 9C = <y1 be the orthogonal comple
ment of y in 3C. Then we have the following results. 

LEMMA 1. If X is finite-dimensional, then the operator T0= YTY is 
selfadjoint. 

PROOF. Let £>0 denote the domain of T0. Clearly SD0 = 9C©(SDfYy). 
The fact that 3Do is dense in 3C follows from a lemma of Gohberg and 
Krein [4], see also Goldberg [3, p. 103], which states that the inter
section of a dense subspace and a closed subspace having finite de
ficiency is dense in the latter. Since To is symmetric, it suffices to 
show that £>o=£>o> where £>* denotes the domain of the adjoint of 
TV First of all, w££) 0 implies that Fw££> = £>*. Therefore (Tv, Yu) 
is continuous for all #££) . In particular, (TYv, Yu) is continuous for 
all Yv&S), so that (YTYv, u) is continuous for all Ï ;££)O. This means 
that w E £ # , and therefore £>oC£>*. On the other hand, let w££>*-
Then (YTYv, u) = (TYv, Yu) is continuous for all vÇz£>o or equiva
len t^ , (Tw, Yu) is continuous for all wESDH'y. Now let 9Ci 
= {^£9C| 33r£°y for which x+y&£)}. 9Ci is clearly a subspace (not 
necessarily proper) of 9C and therefore finite-dimensional.2 Let xi, 
X2i * * * , Xs be any orthonormal basis for 9Ci and let yi, y^ • • • , ys be 
any elements in <y such that Zj = Xj+yjÇz£), j = l , 2, • • • , s. Let 
Z = sp {*i, z2> • • • , z8 ) . I t is easy to see that 3D = Z+ (SDP^). Now let 
"Wo^&ny and 

•Wj = sp{*i, 22, • • • , Zj} + Wo, j = 1, 2, • • • , s. 

1 Research partially sponsored by the Air Force Office of Scientific Research, 
Office of Aerospace Research, United States Air Force, under AFOSR Grant 1306-
67. 

2 It can be shown that 9Ci « 9C but this fact is not needed for the proof of the lemma. 
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We have already shown that (Tw, Yu) is continuous on *W0. Suppose 
that (Tw, Yu) is continuous on %#>*, 0^>k<s. Let wk+i denote any 
element in W*+i. Then we can write wk+i = o#jb+i+Wft, where WfcG f̂c. 
By construction, wk is orthogonal to xk+i and therefore 

I («*+i, WA) J = | (ffAH-l + ^*+l, Wk) I = | 6^+1, %) I 

i lWINI-DW ,"i] l /1IWI 

sd-^oll^iHNl 
for some €*+i, 0<eA +i<l, where eA+i depends only on xk+i and y*+i. 
Now we have by direct computation, 

H^il l2 à I « I2 ||z*+1||
2 - 2 I a I I (wk, Zk+l) I + M l * 

(1) è j a | 2 | M | » - 2 I a I (1 - « H - O I M I N I + H I 2 

- [| «I ||%+l|| - HI!2 + 2^1 «1 H I \M\. 
This inequality (1) means that 

(2) 2 | « | H | | | « M . 1 | | S ||w*fi||V*fi 

and 

(3) | a H|2i+1||2 - 2 | a | H | \M\ + H I * ^ | K t | | » . 

Combining the inequalities (2) and (3) we see that 

(4) I « H W I 1 + ikl l2 a; (i + ï/^ollw^JI1. 
Now letting 7/A+i = (l + l/€*+i)1/2 we obtain from (4) the inequalities 

I «Ills*, ill ^ m l k + i | | , 

I W | Si^i||w*+i||' 

Therefore, from the finite-dimensionality of Z and the continuity of 
(Tw, Yu) on °W*, we have 

| (Twk+ly Yu)\ SS | « | | (r**+1, F«) | + | (TV*, F«) | 

g | a | 7*n||**+i|| +|8*||w*||. 

Using the inequalities (5) in (6) we obtain 

\(Twk+hYu)\ Sj8*+i|k*+i||, 

where J3JH-I = Vk+i(7k+i +&), and therefore (7w, Yu) is continuous on 
Wfc+l, * * 0 , l f • • • , 5 - 1 . 

Since aD=Z+(3)ncy) = cW„ this means that FwGSD* = SD. 
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Since 3D0 = 9C © (£>n<y), it follows that u G £>0 and therefore we have 
©o-Bff. Q.E.D. 

For an application of the above result see [6]. 

LEMMA 2. If 9C is a sub space of £), then the operator T0 = YTY is 
selfadjoint. 

PROOF. Since X is contained in 3), we have £> = 9C© £>n<y = 3D0, and 
therefore £>0 is dense in 3C. As in Lemma 1, it suffices to show that 
£>o=£>o- The same argument used above proves that 3D0C£>o- Now 
suppose that uG£>*. Then (YTYv, u) = (TYv, Yu) is continuous for 
all &G3)o, which means that 

(7) | (Tw, Yu) | â o||w|| 

for all wÇz&r^y. Since T is a closed operator and 9C is a closed sub-
space of 3D, it follows from the closed graph theorem that T is con
tinuous on 9C. Therefore we have 

(8) | (Tx, Yu) | S fi\\4 

for al l#£9C. Let 7 = 2 maxjce, j8}. For any 0 G 3)= 9C©3)n<y we can 
write z — x+w where #£9C and zoGSDPi'y. Applying the inequalities 
(7) and (8) we obtain 

I (Tz, Yu)\ S I (2*, Yu)\+ \ (Tw, Yu) | â fi\\4 + a||w|| 

^ 7||* + w\\. 

This means that F ^ G 3}* = 2D = 3)0, and therefore ^G3>o. Q.E.D. 
REMARK. Let us note that whenever <yC3D, the assertion that 

YTY is selfadjoint follows trivially. 
ADDENDUM. After the completion of this work, a paper by James P. 

Williams [J. Math. Anal. Appl. 17 (1967), 214-220] appeared in 
which on p. 220 he attributes to Lumer the remark that if A is a non-
negative bounded operator and if B is selfadjoint, then A1I2BA112 is 
selfadjoint. This statement, seemingly more general than the above 
lemmas, is incorrect, as can be seen in the following counterexample. 
Let B be an unbounded self adjoint operator, let u be any element in 
3C which is not in the domain of B, and let A be the projection opera
tor onto sp {u} . Then A and B satisfy the above hypotheses, but the 
operator A MBA112 is not selfadjoint. In fact, the domain of All2BA112 

is {tf G3C| (u, v) = 0 } , which is not dense in 3C. 
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1. Introduction. Recent attempts (see [ l ] and the references in the 
same article) to extend the Wiener-Hopf technique for functions of a 
single complex variable to those of two or more complex variables 
have relied on a remark of Bochner's [2] that guarantees the required 
decomposition under suitable restrictions. Bochner's remark states 
that : if f(zi, • • • , zn), Zj = Xj+iyj, is analytic in a tube T: yi<Xi<Sit 

yi&(-~°o, oo ), and if f I „ • • • f\ f(zu • • '**n)[Wyi • • • dyn converges 
in T, then there exists in T a decomposition/— ZJu>ifu where each fi is 
analytic and bounded in an octant shaped tube Ti containing the interior 
of T. Moreover, such a decomposition is unique up to additive constants. 
The uniqueness of the decomposition is not verified in [2] but refer
ence is made to H. Bohr's [3] corresponding result for functions of a 
single complex variable. 

I t is here shown that the uniqueness statement is false. However, 
the adjunction of the additional hypothesis that the ƒ»•—»0 when any 
one of the Xj—* <», in the tubes Ti, restores the uniqueness of the de
composition and justifies the use of the result in [2]. 

2. A counter-example. In the decomposition ƒ = X X i ƒ*> h *s a n " 
alytic and bounded in the tube Ti: Xi>yif 3>*£( — °°, °°), i = l , 2, 

• • • , n, and ƒ2 is analytic and bounded in the tube T2: #i<ôi, #/>Yy, 


