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1. Introduction. Examples. A complex valued function a of a 
complex argument is a polynomial function u(z)=azz+iz2+cz+b of 
degree at most three if and only if u satisfies the inhomogeneous in­
clusion-exclusion identity of degree three 

u{fi + y + M) - u(p - 7 + M) - tt(0 + y - to) + u(/3 - y - to) 

- b(u(/3 + y + Ô) - u(fi - y + S) - u(fi + y - 8) + u(/5 - 7 - 5)), 

for all complex numbers j8, 7, ô, b. The function u(z)=z+l is a 
polynomial function of degree at most three. Suppose a real valued 
function t of two real arguments is Euler homogeneous of degree 
three. Then t is a cubic form t(x,y) =zxz+fa2y+$xy2+$yz if and only 
if either t satisfies the heterogeneous inclusion-exclusion identity of 
degree three 

(*C8+7+to)-*(-j8+7+to)-*C8-7+to)-*08+7--to))/24 

= b(*08+7+*)-*(-i8+7+«)-*C8-7+*)-*08+7-*)V24, 

for all ordered pairs j3, 7, S of real numbers, all real numbers b, or t 
satisfies the homogeneous inclusion-exclusion identity of degree 
three 

(*(&/3+07+to)-*(-¥+fiY+to)^^^ 
-BBb(*(^+7+*)-*(- i8+7+*)-*08-7+«)-*C8+7-W24 

for all ordered pairs j8, 7, ô of real numbers, all real numbers b, Q> b. 
The annihilator map t(xf y) = 0 is a cubic form. 

This paper gives the general characterization of polynomial trans­
formations between vector spaces over a field of characteristic zero. 
The characterization, a generalization of A. M. Gleason's [3] and 
H. Röhrl's [9] recent treatment of quadratic forms, is in terms of 
inclusion-exclusion [4, pp. 8-10] identities. It is analogous to the 
characterization of a linear map v by means of the linearity identity 
v(aat+bj8)=ava+bvj8. Constant, linear and affine maps do not fit 
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neatly into the inclusion-exclusion identity theory. As far as it is 
concerned there is a disparity between the straight (degrees zero and 
one) and the curved (degrees two and higher). 

2. Euler homogeneous maps. Polynomial transformations. Let V 
(with zero vector 0) and W (with zero vector co) be vector spaces 
over a field $ of characteristic zero. Let J be the set W7 of functions 
(maps, transformations) with domain V, codomain W. Let r be a non-
negative integer. A map s 6 J is Euler homogeneous of degree r if for 
each ct£$, each C Ü £ F it is true that saa = arsa. A map t&J is a 
homogeneous polynomial transformation of degree r if there is an r-
linear map m: VX VX • • • X V—+W such that for each aÇzV it is 
true that ta = m(a, a, • • • , a). Homogeneous polynomial trans­
formation of degree r are Euler homogeneous maps of degree r. Let r 
be a nonnegative integer. A map u £ 7 is a polynomial transformation 
of degree at most r if there is an r-affine map a: FX VX • • • X V-+W 
such that for each a G F it is true that ua = a(at a, • • • , a). Let 
* £ / . If t is a homogeneous polynomial transformation of degree r 
then t is a polynomial transformation of degree at most r* for each 
integer r*}£r. Let u G J . If u is an affine map then u is a polynomial 
transformation of degree at most r for each positive integer r. If u is a 
polynomial transformation of degree at most r then u is a polynomial 
transformation of degree at most r* for each integer r*^r. 

THEOREM. Let u £ / , Let r be a nonnegative integer. Fix any integer 
r*^r. Suppose that u is a polynomial transformation of degree at most 
r*. Suppose that u is an Euler homogeneous map of degree r. Then u is 
a homogeneous polynomial transformation of degree r. 

THEOREM. Let r be a nonnegative integer. A map uÇzJ is a poly­
nomial transformation of degree at most r if and only if there is a homo­
geneous rth degree polynomial transformation u*: V®®—>W such that 
for each a G V it is true that ua=u*(a, 1). 

GLEASON'S LEMMA. tÇzJ is a homogeneous polynomial transforma­
tion of degree two if and only if both of the following assertions hold: 

(i) (<(T + M) - * ( -Y + M))/4 = b(*(7 + «) - <(-7 + *))/4 

for each b E $ , each y, ôÇzV. 
(ii) Either tm = o?tafor each a Gif, or else td=œ. 

3. Inclusion-exclusion identities. Now fix an integer p^2. Let 
L = {1, 2, • • • , p}. If S is a finite set let n(S) be the number elements 
of S. Thus n(4>) = 0 and n(L)=*p. Let 
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M = {A C L\ 2n(A) <p}\J {A*CL\ 2n(A*) = p and 1 G A*}, 

N= {ACL\l$A}. 

Let 2L be the power set of L. The set DL consists of all lists [7, 
p. 43] of p elements of the set D. Define a function r: 2L—>{ 1, — 1} L 

by setting r [B](ƒ) = - 1 if j'G-B, r[B](ife) = l if k$B for each -BCi. 
Now let 

*(p,t,*)- S (-i)»W)*(£'MoW) A!23,_1 

AeM \jeL / / 

* * 0 , « , # - Z ( - « * " ' « ( S r[5](j)i8(i)). 

If CtG®*' and ce G VL define the pointwise product a a £ VL by setting 
(aa)(i) = a(i)«(i) for each iÇzL. Let 

F = {be®L\Hj) = 1 f o r e a c h / G £ ~ { ^ } } . 

A map u G / satisfies the inhomogeneous inclusion-exclusion iden­
tity of degree p if $*(p, u, bl3) = b(p)ó*(p, u, j3) for each bE.Y, each 
j S G ^ . A map tÇ~J satisfies the heterogeneous inclusion-exclusion 
identity of degree p if $(p, ty aa)**a(p)$(p, t, a) for each ciG Y, each 
a(E.VL. A map * G / satisfies the homogeneous inclusion-exclusion 
identity of degree p if 

é(p, t, eta) «= a(l)a(2) • • • a(p)â(p, t, a) 

for each a G ^ , each a G T™. 

THEOREM. Let uÇzJ. Suppose u is an affine map. Then u satisfies the 
inhomogeneous inclusion-exclusion identity of degree p*for each integer 
P*£2, 

THEOREM. Let tÇzJ. Suppose that t is an Euler homogeneous map of 
degree 1, Suppose that there is an integer p*}£2 such that t satisfies the 
inhomogeneous inclusion-exclusion identity of degree p*. Then t is a 
linear map. 

THEOREM. Let tÇzJ* Suppose that t is an Euler homogeneous map of 
degree p. Then t satisfies the homogeneous inclusion-exclusion identity 
of degree p if and only if t satisfies the heterogeneous inclusion-exclusion 
identity of degree p. 

To each tGJ there corresponds a map zn[p, t\: VXVX » • • 
X V-+W defined by setting, for jSG VL

f 
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«[#, *](/?(!), 0(2), • • • ,M) - *iP> '•«. 
THEOREM. Z,e/ * £ / . Suppose t is an Euler homogeneous map of 

degree p. Suppose t satisfies the homogeneous inclusion-exclusion iden­
tity of degree p. Then m [p, t] is a symmetric multilinear map. Moreover 
for each \£:Vit is true that t\~m[p, t]Çk, X, • • • , X). 

This is a von Neumann-Jordan theorem [6] whose proof uses 
Gleason's lemma, 

4. Intrinsic characterizations. Recall the blanket hypothesis of 
this paper, that p à 2, 

HOMOGENEOUS CHARACTERIZATION THEOREM, * £ ƒ is a homoge­
neous polynomial transformation of degree p if and only if t is Euler 
homogeneous of degree p and t satisfies one of the following identities: 

(i) The heterogeneous inclusion-exclusion identity of degree p. 
(ii) The homogeneous inclusion-exclusion identity of degree p. 
(iii) The inhomogeneous inclusion-exclusion identity of degree p. 
(iv) The inhomogeneous inclusion-exclusion identity of some degree 

p*-p-
(v) The inhomogeneous inclusion-exclusion identity of each degree 

INHOMOGENEOUS CHARACTERIZATION THEOREM. UE.J is a poly­
nomial transformation of degree at most p if and only if u satisfies the 
inhomogeneous inclusion-exclusion identity of degree p. 

There are three ideas behind the proofs [l] of all these results. 
To prove that polynomial transformations satisfy inclusion-exclusion 
identities go back to the definitions in terms of multilinear and multi-
affine maps. Write out the combinations and verify the identities. 
To prove that a degree p Euler homogeneous map tÇzJ, which satis­
fies that the homogeneous degree p inclusion-exclusion identity is in 
fact of the form 

ta = m[p, t](<x,a, * • • , « ) 
where m [p, t] is a symmetric multilinear map from VX VX • • • X V 
to Wf employ Gleason's Lemma and a combinatorial argument to 
show that zn[p, t] is symmetric bilinear in any two of its arguments 
for a fixed setting of the other p — 2. To get the general theory from 
the homogeneous theory without having to adapt all the proofs of the 
foregoing results to multiaffine maps employ the definition of arbi­
trary polynomial transformations from V to W in terms of homoge­
neous polynomial transformations from V@ $ to W. Some interesting 
technical lemmas are the following. 
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LEMMA. Suppose uÇzJ is a polynomial transformation of degree at 
most p. Define t: V®$t-*Wby setting 

*G»,0) - È ( ' ) ( - ! ) ' « ( ( # - 2M/PW 
;«oV// 

*G8,6) -*u((l/b) |8) 

/or eacfe j3£ F, eac/& nonzero bG$. Tfee» * is a homogeneous polynomial 
transformation of degree p. 

LEMMA. Suppose tÇzJ satisfies the homogeneous inclusion-exclusion 
identity of degree p. Then for eachfiÇzVit is true that ( — l)p*(—j8) = t(i. 

5. Differential calculus. Let V and W be Banach spaces. The 
Frechet derivative of t with respect to a G V at j8 is the limit 

<*: a>0J) - lim(r(/? + *«) - *G8))A 

as $—»0. The mixed £th order Frechet derivative [8, p. 169] of tÇzJ 
with respect to the vectors on the list yÇzVL at the vector /3G V is 
defined as 

<* :7( l ) ,7 (2) , - - - ,7 (^ - l ) ,7 (#)>(» 
- «*: 7(1), 7(2), • • • , y(p - 1)): 7(#)>W). 

The vector <*: ô, 5, • • • , ô, ô)(P) = (t: 5p)(j8) is the pure £th Frechet 
derivative of * with respect to 8 G V at j3. 

EULER'S THEOREM, i / tf G / w aw Ew/er homogeneous map of degree 
p then for each x G£, each aÇEVit is true that 

(p - %)\(t: <x°){a) = />!*a. 

THE ARCHIMEDEAN MEAN VALUE THEOREM. Suppose tE.J is a 
homogeneous polynomial transformation of degree p + 1. Suppose 
a*çzyLKj{p+i)t that a*(p + l)=ri, and that a is the restriction of a* 
to L. Then 

(p+1) I2*é(p+l,t, a*) 

~2 £ (~l)»M(t:v)(Zr[A]<jMj)\ 
AeM \ jeL / 

Suppose that p=* 1, so that t is quadratic. If W, F and $ are the real 
numbers then the graph of t is a parabola through the origin. The 
theorem then implies that t(a+l) — t(a~ l) = 2t'(a). This last fact, 
in its geometric form, was known to the Greeks [5, p. 234] before 
Archimedes. An induction based on this theorem leads to 
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DIXON'S THEOREM ON DIFFERENCES AND DERIVATIVES. Suppose 
V and W are Banach spaces and that tÇzJis a homogeneous polynomial 
transformation of degree p. Then for each aÇzVL it is true that 

pl*(p, t, a) = (t: «(1), «(2), . • • , « ( # - l))(a(p)). 

This observation [2] of R. D. Dixon puts the foregoing theory into 
a new light. The theory was developed as a purely combinatorial 
exercise. But he has given very different proofs, valid in Banach 
spaces, of several of the results above. 

Added in proof. S. Kurepa's papers (Glasnik Mat.-Fiz. As-
tronom. Ser. II DruStvo Mat. Fiz. Hrvatske 19(1964), 23-26 and 
20(1965), 79-92) parallel [3] and [9]. Polynomial transformations 
between affine [7, p. 420] spaces A, B over a field $ of characteristic 
zero have an intrinsic characterization. sÇzBA is a quadratic poly­
nomial transformation if and only if 

s(aa + bfi) - s(ba + a/3) + (a - &)«(«) + (b - a)«08) 

for each a, j3£A each a, 6 £ $ such that ct+6 = l. The characteriza­
tion of a cubic polynomial transformation sGBA, in a symmetric 
form which can be given an intrinsic affine meaning, is that 

[s(a« + b/3) - s(a0 + ba)] - [s(a(Qa) + 6(0/3)) - s(a(üfi) + b(Ûa))] 

- [(08(a) + ktf)) - (aeGS) + is(a))] 

- [aa(Qa) + fc(Q0) - (ae(O0) + ba(Oa))] 

for each a, j8GA, each translation Q of A, each a, &E® such that 
a+b = l. The affine inclusion-exclusion identity characterizations of 
higher degree transformations will appear in [l]. 
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