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Several years ago I calculated presentations for several of the 
groups SL(2, R) where R is the ring of integers of a quadratic imag­
inary number field K = Q((—in)112). The method used was extremely 
tedious and was never published. Recently, while checking these 
calculations, I discovered a much simpler approach to the problem 
which I will outline here. The interest in these calculations is consid­
erably increased by recent results of Serre [ô]. He considers the con­
gruence subgroup problem for the groups SL(2, R) where R is the 
ring of integers 0 of an algebraic number field (and, more generally 
for R = e[a"~l] where a£0 ) . He obtains the expected results [l] , 
[5] whenever R has a unit of infinite order. Thus the only exceptions 
are R~Zand the case which I will consider here. Serre has also shown 
that all of these cases are true exceptions. The case R = Z is, of course, 
well known. Hopefully, the calculations outlined here will throw some 
light on the remaining cases. At present, I have only carried out the 
calculations for fields K with discriminants D between — 1 and — 24. 
The length of the calculation increases rapidly with \D\ but the 
calculation could easily be extended to arbitrarily large values of | JOJ 
by machine computation. This has not been done at the present 
time. Full details of the calculations will be published elsewhere. I 
would like to thank H. Bass for communicating Serre's results to me. 

1. Transformation groups. The original calculation depended on a 
theorem of Macbeath [4]. However, this leads to an excessively large 
number of generators and relations and so to the long and tedious 
process of simplifying the presentation. The main simplification 
results from a generalization of Macbeath's theorem to non-simply-
connected spaces. 

Let X be a pathwise connected topological space. Let G be a group 
acting on X by homeomorphisms and let F be a pathwise connected 
open subset of X whose transforms cover X — GV. Let E be the set of 
elements crÇC such that Vr\<TV?*0. Let T be a group with one gen­
erator [or] for each cr£E and with the relations [ar] = [cr] [r] when­
ever Vr\crVr\arV^0. Let €: T-+G by e([<r])=cr. Macbeath's theo­
rem asserts that e is an isomorphism if TTI(X) = 0. In the general case, 
the following result holds. 
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THEOREM 1. There is an exact sequence 

6 € 

where N is the subgroup of iri(X) generated by all elements which can 
be represented by a loop in at least one of the sets V\JaVt c r££ . 

The map 0 is defined by subdividing a loop X into small paths con­
tained successively in sets poV9 piV, • • • , pnV, p»=po and setting 
0Q$SS\PQ'1PI]W1P*] ' • ' b>Z-iPn]. 

2. Hermitian forms. We consider binary hermitian forms Q(xf y) 
<=A[\x+zy\2+£2\y\2] where s £ C , £ > 0 , A>0. We ignore A and 
consider the space H={(z, t)}=CXR+. The group GL(2, C) acts 
on H by changing the variables xt y in the usual way. Bianchi and 
Humbert [2], [3] have given a reduction theory for such forms under 
the action of G = SL(2, R)QGL(2, C), R being the ring of integers of 
a quadratic imaginary number field K(ZC. Consider all £, rjQR with 
RÇ+Rrj—R. At these points, consider the value ()(£, rj) and suppose 
that the minimum of these values occurs at (Co, Vo)» By an element 
of SL(2, R) we can change variables so that (£o, Vo) H- (1, 0). Let B be 
the subset of H for which the minimum occurs at (Jo, 7̂o) = (lf 0). 
Then H~GB. I t is easy to see that B consists of all points of H lying 
above all the spheres 5(X//x): |/JWB—X| 2+? 2 | /x | 2 à l for all X, ix&R 
with Rk+R/ji — R. I t is important that locally a finite number of 
SÇk/p,) suffice to bound B4 In fact every point of the boundary 
C X { 0 } of H=CXR+ lies strictly below one of the SÇk/p,) except 
for a discrete set (the "singular* points). This was partially shown by 
Humbert [3] but he considered only points with coordinates in K. 
The remaining points may be disposed of by using the following the­
orem of diophantine approximation. 

THEOREM 2. Let KQC be a quadratic imaginary number field with 
ring of integers R. Then there is a constant A depending only on K such 
that f or any z(EC with z(£K, there are an infinite number of solutions 
X, M£-R °f the inequality 

| « -X/ / i | S i l / U I 1 

which satisfy the condition R\+RIJL = R. 

In spite of its classical appearance, I have not been able to find this 
theorem in the literature except in the simple case where the class 
number h of K is 1. In this case we can easily obtain solutions with 
R\+Rp,~R by factoring out the greatest common divisor of X and fx. 
The general case requires a more complicated argument. 
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3. A presentation for SL(2, R). Using the notations of §2, it is easy 
to see that the boundary of B has a regular cell decomposition with 
2-cells of the form BC\SÇK/ix) for certain X, ju£i? with R\+Rn = R. 
I will refer to this cell decomposition as the Bianchi diagram of K. 
Let Eo be the 1-skeleton of the Bianchi diagram and let E be the union 
of all crE0 for (r£G = SL(2, R). Then £ is a regular 1-complex stable 
under G and E0 is a subcomplex of E. We now apply Theorem 1 to G 
and the space X = i 7 ~ E and V—B —E*=B—E0, compensating in the 
usual way for the fact that Fis closed rather than open. The necessity 
for the generalized form of Theorem 1 now becomes clear. Most inter­
sections BCMTB will have dimension ^ 1 . By excising E we eliminate 
all such intersections and so eliminate all the excess generators and 
relations. 

We must now determine the group T. Note that B and the Bianchi 
diagram are stable under the group H of upper triangular matrices in 
G = SL(2, R). Let S(Xi/fjLi)nB1 i=* 1, • • • , r represent all 2-cells of the 
Bianchi diagram modulo the action of H. Choose matrices 

Ai « (xV<) G G. 

Then T is generated by H and the [At] with easily determined rela­
tions. To find G, we factor out the image of wi(X) in T. It will suffice 
to look at small loops about the edges of the Bianchi diagram, and to 
take a set of representatives for the edges modulo H. 

If x<EG lies in one of the double cosets HAiH, we choose a repre­
sentation x~hiAihi and define [x] ^hiAJh as a formal word. If e is 
an edge of the Bianchi diagram, consider all spheres SÇX/fx) with 
R\+RfjL = R such that e lies on S(\/fx), There are a finite number of 
these and the values OL~\/IJL all lie on a straight line in C. Let a\} 

• • • , an be the values so obtained in order along the line. Choose 
matrices 

Pi « &Î . ) E SL(2, R) 

with aj—Xj/fAj. Then [pjpf+i] is defined for all ƒ The "edge relation" 
corresponding to e is defined to be the relation 

R* = [pf^Hplpf1] • ' ' [pn-lP^Kpn] = 1. 

This relation obviously holds in G and G is obtained from V by adding 
all these relations. 

If we ignore the cases X = Ç((-1)1/2) and !£>(?((—3)1'*), we can 
choose as generators for H the matrices 
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and 

- C O 
where 1, o) is an integral base for i?. 

THEOREM 3. If K^Q{(-\)112) or (?((--3)1'2), SL(2, R) is generated 
by J, Tf U, Au • • • $ At with the relations 

(1) J is central, TU= UT, J2 = l. 
(2) ATl=[ATlli=U • • - , r . 
(3) The edge relations Re = 1 for a set of representatives of the edges 

of the Bianchi diagram mod H. 

The relation (2), of course, stands for a relation of the form AT1 

— hAjh' for some h, h'Ç~H, \Sjûr. The right hand side of this is 
uniquely determined modulo the relations (1). 

4. Explicit calculations. I will now give a few examples of represen­
tations obtained by the above method, beginning with the two cases 
omitted in Theorem 3. The letters J", T, U will always have the same 
meaning as in Theorem 3. In addition, A will stand for 

For X = Q((- l)1 / 2) we choose a> = * = ( - I ) 1 ' 2 in U and let 

*-r. :> 
THEOREM 4. The group SL(2, Z[i]) is generated by J, T, U, L, A 

with the relations TU=UT, J2 = l, / central, TJ = J, (TLY = J, 
(ULy = J, {AL)* = J,A* = J, {TAY = J, (UAL)*m J. 

For K = Q((-3)1'2) we choose w = K ~ l + (-3)1/2) in U and let 

- c * :> 
THEOREM S. The group SL(2, Z[o>]) forK=*Q{(-3)112) is generated 

by J, T, U, L, A with the relations TU= UT, J* = l, J central, Z,3 = 1, 
L-ITL=T-W-K L-WL^T, A*=J, (AL)*=*J, (TA)***J9 
(UAL)* = J. 

In each of these theorems I have slightly altered the edge relations 
to make the presentation a bit simpler. 
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For X^QCC-S)1 '2), we choose o> = (-5)x '2 and let 

_ /-co 2\ / - c o - 4 ~2co\ 

~ \ 2 J ' \ 2w co - 4 / 

THEOREM 6. The group SL(2, Z[(-5)1 / 2]) w generated by / , T, f/, 
A, B, C with the relations J2 = l, / t^raZ, rC/= UT, A2** J, J32 = / , 
{TAy = J, (AB)2 = J, (AUBU-y^J, ACA~JTCT~\ UBU~lCB 
= JTCT-\ 

It follows from this that the abelianized group G/[G, G] for 
G = SL(2, Z[(-5)1 / 2]) has rank 2. The elementary subgroup (gen­
erated by T and U) has rank 1. Serre has shown by other methods 
that this sort of behavior is to be expected of quadratic imaginary 
fields. In the few examples I have computed, the rank of G/[G1 G] 
turns out to be equal to the class number. I do not know whether this 
is true in general. It also turns out that G/[G, G] is finite for G 
= GL(2, R) rather than SL(2, i?). Again I do not know if this is 
always the case. 

5. Extending the calculations. The main difficulty in extending the 
calculations is to determine the Bianchi diagram. For the calcula­
tions above, this was taken from Bianchi's paper [2]. In the general 
case it is necessary to calculate the diagram directly. The first step 
is to determine all singular points. This is easily done by elaborating 
the methods of Humbert [3]. 

The singular points of K form a finite number of cosets of R in K. 
There are none outside of K. We assume m is squarefree. 

THEOREM 7. The singular points of K^Q((—m)112) modulo R are 
given by the formula p(r+(—m)li2)/s where r, s£Z, s>0, —s/2<r 
^s/2, s2^r2+mand 

(1) If m+3 mod 4, then s\r2+mf s?*l, (p, s) = l, and p is taken 
mod s. 

(2) If w s 3 mod 4, then 2|s, s?*2, 2s\r2+m, (pf s/2)=*l, and p 
is taken mod s/2. 

It is also worth noting that if we ignore p and omit the conditions 
55^1 and S9*2, the ideals (s, r+(—m)lt2) form a complete set of 
representatives for the ideal classes of R. 

We can now find the diagram by a trial and error procedure. To 
check whether the diagram we obtain is the true Bianchi diagram 
we have only to check whether some nonsingular vertex of the dia­
gram lies strictly below one of the spheres 5(X//x) with (X, ju)=i?. 
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If it does, we throw in that SÇk/fx) and its translates by R and begin 
again. It is not hard to give an upper bound for the number of steps 
needed. 
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