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Several years ago I calculated presentations for several of the
groups SL(2, R) where R is the ring of integers of a quadratic imag-
inary number field K = @((—m)V?). The method used was extremely
tedious and was never published. Recently, while checking these
calculations, I discovered a much simpler approach to the problem
which I will outline here. The interest in these calculations is consid-
erably increased by recent results of Serre [6]. He considers the con-
gruence subgroup problem for the groups SL(2, R) where R is the
ring of integers O of an algebraic number field (and, more generally
for R=0[a"!] where a€0). He obtains the expected results [1],
[5] whenever R has a unit of infinite order. Thus the only exceptions
are R=2Z and the case which I will consider here. Serre has also shown
that all of these cases are true exceptions. The case R=Z is, of course,
well known. Hopefully, the calculations outlined here will throw some
light on the remaining cases. At present, I have only carried out the
calculations for fields K with discriminants D between —1 and —24.
The length of the calculation increases rapidly with |D| but the
calculation could easily be extended to arbitrarily large values of | D|
by machine computation. This has not been done at the present
time. Full details of the calculations will be published elsewhere. I
would like to thank H. Bass for communicating Serre’s results to me.

1. Transformation groups. The original calculation depended on a
theorem of Macbeath [4]. However, this leads to an excessively large
number of generators and relations and so to the long and tedious
process of simplifying the presentation. The main simplification
results from a generalization of Macbeath’s theorem to non-simply-
connected spaces.

Let X be a pathwise connected topological space. Let G be a group
acting on X by homeomorphisms and let V be a pathwise connected
open subset of X whose transforms cover X =GV. Let E be the set of
elements ¢ &G such that VMo V= . Let I' be a group with one gen-
erator [o] for each ¢&E and with the relations [o7]= [¢][r] when-
ever VNoVNarV#=@. Let e: -G by €([¢]) =0. Macbeath’s theo-
rem asserts that e is an isomorphism if 7,(X) =0. In the general case,
the following result holds.
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THEOREM 1. There is an exact sequence

0
1-—->N-—>1r1(X)—->I‘-i>G——>1

where N is the subgroup of m(X) generated by all elements which can
be represented by a loop in at least one of the sets V\JeV, sEE.

The map 0 is defined by subdividing a loop A into small paths con-
tained successively in sets poV, p1V, * « +, puV, pn=po and setting

0\ = [opu] [orp2] - - - [pupn].

2. Hermitian forms. We consider binary hermitian forms Q(x, ¥)
=A[|x+2y|2+¢2|y| 2] where 2EC, >0, 4>0. We ignore 4 and
consider the space H={(z, {)} =CXR*. The group GL(2, C) acts
on H by changing the variables x, ¥ in the usual way. Bianchi and
Humbert [2], [3] have given a reduction theory for such forms under
the action of G=SL(2, R) CGL(2, C), R being the ring of integers of
a quadratic imaginary number field KCC. Consider all £, € R with
RE+Ry=R. At these points, consider the value Q(&, 1) and suppose
that the minimum of these values occurs at (£, 70). By an element
of SL(2, R) we can change variables so that (¢, 7o) » (1, 0). Let B be
the subset of H for which the minimum occurs at (&, 7o) =(1, 0).
Then H=GB. It is easy to see that B consists of all points of H lying
above all the spheres S(\/u): Ipz—)\|2+§'2|u|2gl for all A\, nER
with RAN+Ru=R. It is important that locally a finite number of
S(\/u) suffice to bound B. In fact every point of the boundary
CX { 0} of H=CXR* lies strictly below one of the S\/u) except
for a discrete set (the “singular” points). This was partially shown by
Humbert [3] but he considered only points with coordinates in K.
The remaining points may be disposed of by using the following the-
orem of diophantine approximation.

THEOREM 2. Let KCC be a quadratic imaginary number field with
ring of integers R. Then there is a constant A depending only on K such
that for any 2& C with 3EK, there are an infinite number of solutions
N, uER of the inequality

|z—Nu| = 4/| w2
which satisfy the condition R\+Ru=R.

In spite of its classical appearance, I have not been able to find this
theorem in the literature except in the simple case where the class
number % of K is 1. In this case we can easily obtain solutions with
RN+ Ru =R by factoring out the greatest common divisor of X and u.
The general case requires a more complicated argument.
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3. A presentation for SL(2, R). Using the notations of §2, it is easy
to see that the boundary of B has a regular cell decomposition with
2-cells of the form BNS(\/u) for certain N\, u&R with R\+Ru=R.
I will refer to this cell decomposition as the Bianchi diagram of K.
Let Eg be the 1-skeleton of the Bianchi diagram and let E be the union
of all ¢E, for c&G=SL(2, R). Then E is a regular 1-complex stable
under G and E, is a subcomplex of E. We now apply Theorem 1 to G
and the space X =H —E and V=B —E=B—E,, compensating in the
usual way for the fact that Vis closed rather than open. The necessity
for the generalized form of Theorem 1 now becomes clear. Most inter-
sections BMoB will have dimension =1. By excising E we eliminate
all such intersections and so eliminate all the excess generators and
relations.

We must now determine the group I'. Note that B and the Bianchi
diagram are stable under the group H of upper triangular matrices in
G=SL(2, R). Let S\;/u:;)N\B,i=1, - - - , r represent all 2-cells of the
Bianchi diagram modulo the action of H. Choose matrices

4; = (Ns) € G.

Then T is generated by H and the [4;] with easily determined rela-
tions. To find G, we factor out the image of m(X) in I'. It will suffice
to look at small loops about the edges of the Bianchi diagram, and to
take a set of representatives for the edges modulo H.

If x&G lies in one of the double cosets HA H, we choose a repre-
sentation x =4}, and define [x]="hA h; as a formal word. If e is
an edge of the Bianchi diagram, consider all spheres S(\/u) with
RA+Ru=R such that e lies on S(\/u). There are a finite number of
these and the values a=MA/u all lie on a straight line in C. Let oy,

+, o be the values so obtained in order along the line. Choose
matrices

pPi = Otltz) e SL(Zs R)
with a;=N;/u;. Then [p;p;4] is defined for all j. The “edge relation”
corresponding to e is defined to be the relation
R, = [pr[pwz?] « + + [on-10i][0a] = 1.

This relation obviously holds in G and G is obtained from I" by adding
all these relations.

If we ignore the cases K =Q((—1)¥2) and K =Q((—3)¥?), we can
choose as generators for H the matrices

-1 0 11
=0 ) =60
0 —1 0 1
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7=(0 %)

where 1, w is an integral base for R,

TreoreM 3. If K#=Q((—1)Y2) or Q((—3)*2), SL(2, R) is generated
by J, T, U, Ay, - - -, A, with the relations

(1) Jis central, TU=UT, J2=1,

) A7r=[A47),i=1, -, 7

(3) The edge relations R, =1 for a set of representatives of the edges
of the Bianchi diagram mod H.

and

The relation (2), of course, stands for a relation of the form 47!
=hA;# for some h, "EH, 1 5jSr. The right hand side of this is
uniquely determined modulo the relations (1).

4. Explicit calculations. I will now give a few examples of represen-
tations obtained by the above method, beginning with the two cases
omitted in Theorem 3. The letters J, T, U will always have the same
meaning as in Theorem 3. In addition, 4 will stand for

G o)
1 o/
For K =@Q((—1)¥2) we choose w=7¢=(—1)12in U and let
—: O
(7).
0 ¢
THEOREM 4. The group SL(2, Z[i]) is generated by J, T, U, L, A

with the relations TU=UT, J*=1, J central, L:=J, (TL):=J,
(UL)2=J, (AL)*=J, A2=J, (TA)*=J, (UAL)*=J.

For K=Q((—3)?) we choose w=%(—14(—3)¥2) in U and let

w? 0
z=( )
0 o
THEOREM 5. The group SL(2, Z[w]) for K= Q@((—3)'?) is generated
by J, T, U, L, A with the relations TU =UT, J2=1, J central, L}=1,
LATL=T-1U"Y, L-'UL=T, A*=]J, (AL)=J, (TA4)=J,
(UAL)3=1.

In each of these theorems I have slightly altered the edge relations
to make the presentation a bit simpler.
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For K =@((—5)?), we choose w=(—5)1/2 and let
—-w 2 —w—4 -2
B= ( ) C= ( )
2 w 2w w—4
THEOREM 6. The group SL(2, Z[(—5)Y2]) is generated by J, T, U,
A, B, C with the relations Jt=1, J central, TU=UT, A2=J, B*=],

(TA)2=J, (4B)*=J, (AUBUY)*=J, ACA=JTCT*, UBU'CB
=JTCT.

It follows from this that the abelianized group G/[G, G] for
G=SL(2, Z[(—5)¥2]) has rank 2. The elementary subgroup (gen-
erated by 7T and U) has rank 1. Serre has shown by other methods
that this sort of behavior is to be expected of quadratic imaginary
fields. In the few examples I have computed, the rank of G/[G, G]
turns out to be equal to the class number. I do not know whether this
is true in general. It also turns out that G/[G, G] is finite for G
=GL(2, R) rather than SL(2, R). Again I do not know if this is
always the case.

5. Extending the calculations. The main difficulty in extending the
calculations is to determine the Bianchi diagram. For the calcula-
tions above, this was taken from Bianchi’s paper [2]. In the general
case it is necessary to calculate the diagram directly. The first step
is to determine all singular points. This is easily done by elaborating
the methods of Humbert [3].

The singular points of K form a finite number of cosets of R in K.
There are none outside of K. We assume # is squarefree.

THEOREM 7. The singular points of K =Q((—m)%) modulo R are
given by the formula p(r+(—m)¥2)/s where r, sS€E2, s>0, —s/2<r
Ss/2, stSri4moand

(1) If m%3 mod 4, then s|rt+m, s=1, (b, s)=1, and p is taken
mod s.

(2) If m=3 mod 4, then 2|s, $#%2, 2slr2+m, b, s/2)=1, and p
s taken mod s/2.

It is also worth noting that if we ignore p and omit the conditions
s#1 and s#2, the ideals (s, r4(—m)Y?) form a complete set of
representatives for the ideal classes of R.

We can now find the diagram by a trial and error procedure. To
check whether the diagram we obtain is the true Bianchi diagram
we have only to check whether some nonsingular vertex of the dia-
gram lies strictly below one of the spheres S(\/u) with (\, p)=R.
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If it does, we throw in that S(\/u) and its translates by R and begin
again. It is not hard to give an upper bound for the number of steps
needed.
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