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1. First let us recall the problem of normalization in the affine case. 
We are given a prime ideal $ » (ph . . . , pr) in a polynomial ring 
k[Xi, • • • , Xn] over a field k. We form the quotient ring R 
~k[Xi, • • • , Xnj/ty — klxi, • • • , xn] and consider its integral clos
ure I in k(xi, • • • , # » ) . The problem is to represent / as a finite 
i?-module I=Rxn+i+ • • • +i?xjv, and also as 

ƒ = k[xi9 • • • , #» , %n+i, • • • » #iv] = £[-X"i, • • • , XivJ/O, 

where Q = (gi, • • • , q8) is a, finitely generated ideal. 
The classical solution is nonconstructive in a typical way. One ex

hibits J a s a submodule of a finite .R-module and then invokes the 
Hubert Basis Theorem, first to assert that 7 is a finite i?-module, and 
again to assert that O is finitely generated. But the Basis Theorem is, 
at best, a guarantee that no particular J or O will ever require in
finitely many generators. It does not help us to decide whether gen
erators for I and O can actually be constructed or, if they can, how 
to construct them, how many are needed, and how they depend on 
the initial data $ = (£i, • • - , pr)* 

In this note we will describe a method that treats these questions 
—in the case that k(xi, • • • , xn) is separably generated over k. This 
restriction and also the requirement that k be a field reflect the limita
tions of our technique. Also, k must be defined in such a way that the 
polynomial ring k[T] is constructively a unique factorization domain 
(or else the class of prime ideals $ = (pi, • • • , pr) would have to be 
restricted). A fairly general description of such fields is given in [2], 
following Kronecker's method of interpolation. Any finitely generated 
extension of a prime field, or even the algebraic closure of such a field, 
is allowed. But not the reals nor the complexes nor any £-adic field. 

The same methods apply in the projective case, yielding a construc
tive version of projectively normal normalization and the complete
ness of the linear system of hypersurface sections of a fixed high degree 
on a normal projective variety. 

2. Serious consideration of a strictly constructive approach to 

1 We thank the Sloan Foundation for its generous support. 
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algebra seems to have been initiated by Kronecker and influenced 
the development of algebraic geometry into the 1920's. Valuable 
memories of this can be found in the second edition of Van der 
Waerden's Modern algebra [5]. But the most substantial contribution 
I know of is the 1925 paper [2] of G. Hermann, based on earlier work 
of K. Hentzelt and E. Noether [l], [3]. I thank S. Kleiman for call
ing it to my attention. In that paper, starting with an ideal generated 
by t polynomials of degree at most q in n variables, the author con
structs explicit finite sets of generators for the associated primes and 
for the primary ideals in a certain irredundant primary decomposi
tion. Also exponents are estimated. Explicit bounds </>(q, t, n) for the 
number of generators, their degrees, and the number of associated 
ideals can be derived from the proofs in a routine fashion. However, 
these bounds are enormous. 

Our construction of the normalization is an application of these 
results. 

3. In the course of our proof we will often have to compute the 
image of a map, in the following sense. 

First consider projections. If we are given an ideal 31 = (/i, • • • , ft) 
in k[Xi, • • • , Xn] how can we construct a finite set of generators for 
S3 = %C\k [X%, • • • , -XTn_i]? Unless 3Ï is an intersection of primes, I 
don't know. But at any rate, via elimination theory, we can write 
down a finite set of equations whose locus includes the locus of 23 
as a union of irreducible components. Then, by [2], we get a finite set 
of generators for the radical of 23. If SI is prime so is S3 and the prob
lem is solved in that case. 

This generalizes directly to the situation where we are also given 
TTI, • • • , 7Tm in k [Xi, • • • ,Xn] and S3 is the ideal of allg(Ft, • • • , Fm) 
for which g(wif • • • , Tm) is in SÏ. 

For St prime we generalize further to consider a rational map. 
Namely, set k[Xi, • • • , Xn]/$t = k[xi, • • • , xn] and choose <£i, • • • , 
4>m in the function field k(xi, • • • , xn). We seek a finite set of gen
erators for the ideal S3 that is defined by k[<j>i> • • • , <f>m] 
= &[Fi, • • • , Fm]/33. Each 0t- has a representative g%/hi in 
k(X\, • • • , Xn), with hi not in SÏ. Then the ideal (3Ï, &1F1—gi, • • • , 
hmYm—gm) has exactly one associated isolated prime 3 not contain
ing any hi, • • • , hm. Generators for 3 are constructed by [2], and S3 
is just the projection ^r^k[Yh • • • , Fm]. 

4. We will now discuss our proof of affine normalization. We have 
ty — iPh • • • i pr) prime in k[Xi, • • • , Xn], and the function field 
k(xit • • • , xn) is separably generated over k. 
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The first step, following the classical proof, is to represent the inte
gral closure I explicitly as a submodule of a finite module over the 
coordinate ring. The dimension q can be computed by elimination 
theory, and we may as well assume that it is positive. The separability 
condition will lead to a shuffling of the indices and a construction of 
polynomials Fj in *$r\k [Xi, • • • 9Xq,Xj]9j*=q+lf • • • ,n, for which 
dFj/dXj is not in ty. Using §3 the constructivization of Noether Nor
malization is routine and leads to a coordinate change k [Xi, • • • 9Xn] 
~k[Yu • - • , Yn], with k[Ylt • • , Yn]/$ = k\yi, • • - , ? » ] integral 
and separable over k\yi, • • • , yq], and %r\k[Yi, • • • , Fff] = (0). 
Let A be the polynomial ring k[yi9 • • • , yq] and K its function field 
k(yu ' • • > yq)* Then, routine constructivization of the Primitive Ele
ment Theorem produces a y in k [yi9 • • • , ;yn] for which k (yit • • • 9yn) 
~K(y). The minimal polynomial f(Y) of 3/ over K is constructed 
along with y. It is separable, lies in A [F], and has a certain explicit 
degree d and a nonzero discriminant D in A In this setting I is neces
sarily a submodule of the finite A -module generated by 1/D9 y/D, 
• . . , y*~i/D. 

The second step is to normalize in codimension one. Let E be an 
irreducible factor of D appearing with exponent e. Then the localiza
tion at E9 A Et is a discrete valuation ring whose integral closure IE 
in K(y) is a submodule of the A ̂ -module generated by l/Ee, • • • , 
yd~l/Ee. In this case (see [4]) if we can find z%, • • • , ze integral over A 
such that, setting y =*Zo, each *< does not belong to AE[ZO, • • • , s*-i], 
then i j ^ ^ l s o , • • • , ze]. 

So the problem here is, given So, • • • , *c integral over -4, to find a 
method which either proves that AE[ZQ, • • • , z0] is integrally closed 
or else produces a wew integral element zc+i not in it. 

Now B =AE [ZO, • • • , sc] is a semilocal ring which will be integrally 
closed exactly when its localization at each maximal ideal is principal. 
The maximal ideals of B are induced from the finitely many isolated 
primes of the ideal generated by E in k\yi9 • • • , yq, z0, • • • , ze]. 
Hence we can construct a finite set of generators for each by the 
methods of §3 and [2]. At this point we have to make a separate argu
ment for the case of a curve over a finite field and we will not pursue 
that any further here. Ruling out that case, we can construct an 
infinite sequence {#<} of elements of A which are units in A E and for 
which each Ui—Uj is also a unit so long as i&j. Say B has m maximal 
ideals. Let 2# be one of them and let a and b be two nonzero members 
of our explicitly constructed generating set for 9K. Then it can be 
shown that one of a/(ub+a) for u*=*Ui, • • • , um+i must be integral 
over A E (and in each case we can check yes or no by examining the 
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characteristic polynomial). I t can also be checked whether or not this 
element is in B. If it is not we have produced a new integral element 
(clearing a denominator to make it integral over A). If this element 
x = a/(ub+a) does belong to B then, either x is a unit in the local ring 
Bm in which case b — xrl(l —x)u~"1a is a multiple of a in Bm ; or 1 —x is a 
unit in BM, in which case a=*xu(l ~-x)~lb is a multiple of b. 

This shows that if for each pair of generators a, b in each maximal 
ideal 9K the constructed integral element a/(ub+a) lies in B then each 
localization Bm is principal and, hence, B is integrally closed. 

Consequently, in at most e steps we get AE[ZQ, • • • , ze] integrally 
closed. Doing this for each prime factor E of D gives altogether at 
most degree (D) elements vi, • • • , v& integral over A such that each 
A E [y, Vi, ' • • , »*] is integrally closed. This is normalization in codi-
mension one. 

The third and last step is the key one. Relabel 3>i, • • • , yq, y, 
fli> - • • , ^ as wi, ' • • , w* and set S = £[^i , • • • , wt]. The effect of 
normalization in codimension one is that if s is in S then s/D is inte
gral over S (and therefore over A) if and only if it is regular in codi
mension one—equivalently, if and only if it is in the localization of S 
at each isolated prime of the ideal generated by D in 5. This leads 
to the following characterization of the integral closure J. 

Let % be the intersection of the isolated primary components of the 
ideal generated by D in S. Then I « %/D. 

A finite set of generators for % can be constructed by the methods 
of [2] and §3. We express S as k [Wi, • • • , Wt]/$, get generators for 
9 as in §3, then get generators for the intersection of the isolated 
primary components of (D, 3 ) by [2], and finally reduce modulo Q. 

This gives / as a finite 5-module and essentially completes the 
proof. For S is a finite A -module, generated by the products of the w) 
for j » q+1 f . • *9t and i < d ; so combining expressions gives generators 
for J as a finite A -module, with A contained in R=*k[xit • • • , xn]. 
Thus we have the desired representation 

/ = Rxn+i + - • • + JRxjr « k[xh • • • , XN] = k[Xh • * • , XN]/& 

where generators for O can be got as in §3. 
We heartily thank M. Artin and P. Deligne for very useful and 

pleasant discussions about these matters. 
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If S3 is a variety of groups and d is a positive integer, 93(d!) denotes 
the variety consisting of the groups whose ^-generator subgroups are 
all in 93. In a recent paper [3], B. H. Neumann formulated the Ex
tended Burnside Problem: 

Problem 7. Let 93 be a locally finite variety and d*£ 1 an integer. Is 
93(d) locally finite? 

He went on to ask two related questions: 
Problem 8. Is there, to each locally finite variety 93, an integer 

d = d(%) such that $<<*> is locally finite? 
Problem 9. Do the locally finite groups in 93(d), where 93 is a locally 

finite variety, form a variety? 
Neumann called the latter the Restricted Extended Burnside 

Problem. One might derive from it, like Problem 8 from Problem 7, 
the following: 

Problem N. Is there, to each locally finite variety 93, an integer 
# = w(93) such that the locally finite groups in 93(n) form a variety? 

The purpose of this note is to present reduction theorems for Prob
lem 8 and Problem N, similar to the Hall-Higman reduction theorems 
[l] for the classical forms of Burnside's Problem. 

THEOREM 1. If 93 is a locally finite and locally soluble variety, $$LN 
is the variety consisting of the locally nilpotent groups of 93, and 93^(<r' 
is locally finite for some integer d, then 93(d*} is locally finite for some 
integer d*. 

This is a direct consequence of (c) of the forthcoming paper [2], 
Theorem 2 will be derived from the following part of (b) of [2]: 


