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1. Introduction. Although it is known that there is a finite basis 
for the laws of any finite group (Sheila Oates and M. B. Powell [6]), 
it is not in general an easy matter to find an explicit basis for the laws 
of a given finite group. Indeed, the set of laws given below is, as far as 
we know, the only explicit basis known for the laws of a finite non-
abelian simple group. 

Before writing down the basis we define the law un introduced by 
L. G. Kovâcs and M. F. Newman [4]: 

uz = \(%l x*)*1'*, (x[ xz)*1'*, (x7 xz)**'*] 

and, for n>3, 

THEOREM A. The set of laws ( l)-(7) given below is a basis for the laws 
of PSL(2, 5), the simple group of order 60. 

(1) x*° = 1 

(2) {(x10y10)*[x10,y10]2}* = 1 

(3) {((*y*)5(*V8)*),[«e, / I 6 } 6 - 1 
(4) [x\ y8]16 « 1 

(5) {[xY°x-% y 1 0 ] [y1 °, x6]}10 « 1 

(6) {[yl0x«y-10, x-«][y10, x«}*}6 « 1 

(7) ici = 1. 

It can be verified by direct calculation that PSL(2, 5) satisfies 
these laws, so it is sufficient to prove that the variety S3 defined by 
these laws is contained in the variety SSo generated by PSL(2, 5). 

2. Notation. In notation and terminology we will follow the book 
of Hanna Neumann [5]; we will also assume familiarity with the 
results of Chapters 1 and 5 of this book. 

3. Finite soluble groups in 25. 

LEMMA 3.1. Groups in 23 of prirne-power order are elementary abelian. 

1 The first author is a Fulbright-Hays scholar. 
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PROOF. Law (1) shows that groups whose orders are powers of 2 
are elementary abelian, and that those whose orders are powers of 3 
or 5 have exponent 3 or S respectively. 

Law (2) shows that the commutator of two elements in the same 
3-group has order 10, and hence, since it certainly has order 3, it is 
trivial, and the group is abelian. 

Law (3) gives the corresponding result for 5-groups. 

LEMMA 3.2. An element of order p which belongs to the normalizer of 
a q-subgroup of a group in 58 belongs to its centralizer if p and q take the 
values 5 and 2, 5 and 3, or 3 and 5. 

PROOF. This follows from laws (4), (5) and (6). Consider, for in­
stance, law (5). If y is an element of a 3-subgroup and x an element of 
order 5 in its normalizer, then the first factor in the law vanishes and 
we are left with [y, x]10 = 1 ; but certainly [y, x]z = 1 and so [y, x] = 1, 
as required. 

THEOREM 3.3. A critical soluble group in SS belongs to %S,z, %z% 
or %&*. 

PROOF. Let G be a critical soluble group in 33. Since all its Sylow 
subgroups are elementary abelian, by Theorem 1.2.6 of P. Hall and 
G. Higman [2], G has ^-length 1 for all primes p. Consider in par­
ticular, its upper 5-series. This has the form 

1 « P0 £ iVo £ Pi û Ni =* G, 

where N0 and N1/P1 are groups of order prime to 5 and Pi/NQ is a 
5-group. If S is the Sylow 5-group of Pi then, by Lemma 3.2, 
S g CG(NQ) and so, since Pi = N0S, P I == iV0 X-5. But S is characteristic 
in Pi and hence normal in G and has trivial intersection with JV"0 which 
is also normal in G. Since G is critical we must have ^0 = 1 or S = 1. 

(i) N0 = 1. Then Pi is a normal Sylow 5-subgroup of G. If | G\ were 
divisible by 3, then, by Lemma 3.2, there would be elements outside 
Pi which centralized Pi, and this is impossible by Lemma 1.2.3 of [2]. 
Thus G/Pi has order a power of 2, and hence, since both G/Pi and 
Pi are elementary abelian, G£2Î5H2. 

(ii) Pi = 1. Then the order of G is divisible only by powers of 2 and 
3, and, since G is critical, it cannot possess both a nontrivial normal 
2-subgroup and a nontrivial normal 3-subgroup. If G has no non-
trivial normal 2-subgroup then its upper 3-series is 

1 = p 0 = N0 < px g Ni - G 

where Pi is a 3-group and G/Ni a 2-group. Hence G&&z%2. An analo-
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gous argument shows that if G has no nontrivial normal 3-subgroup 
then G G m . 

COROLLARY 3.4. Finite soluble groups in S3 belong to S3o. 

PROOF. By Corollary 4.2.4 of P. J. Cossey [ l] , 3t52t2, StaSk and 
3Ï2SÏ3 are generated, respectively, by the dihedral groups of orders 10 
and 6, and the alternating group on 4 letters. Since these are all sub­
groups of PSL(2, 5) the varieties 3I5SI2, 2I3H2 and 2Ï22Ï3 are subvarieties 
of SBo. Thus all critical soluble groups in S3 are in S3o, and, by induc­
tion on the order, we see that any finite soluble group in S3 is in 9S0. 

4. Finite nonsoluble groups in S3, 

LEMMA 4.1. The only nonabelian simple group in S3 is PSL(2, 5). 

PROOF. By (4.4) of L. G. Kovâcs and M. F. Newman [4], the law 
^6i= 1 implies that, for any group in S3, the index of the centralizer of 
a chief factor cannot exceed 60, and hence any nonabelian simple 
group in S3 has order g 60. Since PSL(2, 5) is the only simple group 
with this property the result follows. 

THEOREM 4.2. Every finite group in S3 is of the f or m 

AxX • X ArXS 

where A^ PSL(2, 5) (i = l, • • • , r) and S is soluble. 

PROOF. Suppose not, and let G be a minimal counterexample, then 
G is certainly critical and not soluble. We have two cases to consider, 
according as the monolith crG of G is abelian or nonabelian. 

(i) <rG nonabelian. Then <rG is a direct product of groups iso­
morphic to PSL(2, 5) and the centralizer of <TG in G is 1. Hence G is 
an automorphism group of crG and so has the form 

1 £ K£ G 

where K is & direct product of groups isomorphic to either PSL(2, 5) 
or 5s (the symmetric group on 5 letters) and G/K acts as a transitive 
permutation group on the direct factors of K. Because of the ex­
ponent law, 5B cannot occur, and so K is a direct product of groups 
isomorphic to PSL(2, 5) and it follows that K~cG. If G/KT^I, there 
is an element of prime power order acting non trivially on aG and so G 
would not have abelian Sylow subgroups. We deduce that G~K 
~PSL(2, 5). 

(ii) aG abelian. By the minimality of G, G/a(G) is a direct product 
in which at least one factor isomorphic to PSL(2, 5) occurs (since G 



1968] A BASIS FOR THE LAWS OF PSL(2,5) 605 

is not soluble). Suppose GMG)=Hi/<r(G) X H2/<r(G) where Hi/cx{G) 
~PSL(2, 5) and H2><r(G). Then HX<G and so is of the form 
KiX<r(G) where i£i~PSL(2, 5). Thus Ki induces automorphisms of 
Hz which are trivial on c(G) and on Hz/<r{G). But any two such auto­
morphisms commute, and, since the only abelian factor group of Ki 
is the trivial group, it follows that K\ centralizes H^ Thus G = K\ X H% 
is not critical. Hence we must have iJi = G, i.e. G/<rGc^PSL(2, 5). 
Now crG is a £-group for £ £ {2, 3, 5} and, if it were not central in G, 
then G would have non-abelian ^-subgroups. But, if crG were central 
in G, then, since G '^ l , aG^GfC\Z{G) which is 1 for a group with 
abelian Sylow subgroups by 3.2 of B. Huppert [3]; so again we have 
a contradiction. 

COROLLARY 4.3. Finite groups in 93 are in 9So. 

5. Proof of Theorem A. Since we have shown that finite groups in 
33 are in 33o, the proof of Theorem A will be complete if we can show 
that 93 is locally finite, since a variety is determined by its finitely 
generated groups. Now, the finite groups in 93 on a fixed number of 
generators have bounded order, and so, if 93 were not locally finite it 
would contain a nonabelian infinite simple group, contradicting 
Lemma 4.1. 

6. Remarks. We have avoided the use of (7) whenever possible, 
for the reason that we would like to delete it or at least replace it by a 
set of laws involving only a small number of variables. This however 
we have been unable to do. We have used it to show that PSL(2, 5) 
is the only nonabelian finite simple group in 93: this could have been 
avoided by appealing to the (unpublished) classification of simple 
groups all of whose Sylow subgroups are abelian. This still leaves the 
problem of local finiteness of 93. Using arguments similar to those of 
§3.3 of [ô] we can show that there is a set of 5 variable laws which 
imply local finiteness; we have not been able to find such a set ex­
plicitly, however. 
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CHEBYSHEV OPERATOR 
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In this note we show that the Chebyshev operator T is continuous 
at all functions whose best approximations are of maximum degree. 
Let F be an approximating function unisolvent of variable degree on 
an interval [a, j8] and let the maximum degree of F be w. Let P be 
the parameter space of F. All functions considered will be continuous 
and for such functions we define the norm 

||g|| = max{ \g(x)\:a£x£ #}. 

The Chebyshev problem is, for a given continuous function ƒ, to find 
an element T(J) ~F(A*t •), A*&P, for which 

p(/)=mf{||/~/^0|MeP} 
is attained. Such an element T(f) is called a best Chebyshev approxi­
mation to ƒ on [at j3], T(f) can fail to exist, but is unique and charac­
terized by alternation if it exists. Definitions and theory are given 
in [I]. 

LEMMA 1. Let F {A, • ) be the best approximation tof and F have degree 
n at A. Let Xo, • • • , xn be an ordered set of points on whichf—F(Ai •) 
alternates n times. If ||jf—g\\ <8 and ||g — F(B, -)|| ^îp(g)+ô then 

(1) (~iy[F(B, Xi) - F(A, xd] sgn(/(*o) - F(A, x0)) ^ - 3d, 

i — 0, • • • , n. 

The lemma can be obtained using arguments similar to those of 
Rice [2, p. 63J. 

LEMMA 2. Let F be of degree n {maximal) at A then f or given ô>0 


