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1. Let 5= {$»} denote an infinite sequence of complex numbers 
and let A=*(ank) be a summation matrix. If the A -transform of s, 
{*n} = { X)*°-o ankSk} is a bounded sequence, it may be regarded as a 
bounded continuous function t(n) on the discrete space of natural 
numbers N, and thus it has a continuous extension 1 to /3iV, the Stone-
Cech compactification of N$ cf. [2, pp. 82-95]. Let 7 o be a fixed 
point of (3N—N; we define 

J sdA = 7(YO) 
N 

to obtain a finitely additive integration process on iV. In particular 
JNSCLA =<r whenever the matrix A evaluates s to <r. 

Analogously an integration process on N can be created from sum­
mation methods arising from sequence to function transformations. 
For example if a is the Abel method, we choose a point po in /37—I, 
where / denotes the interval [0, 1), and define, for all sequences {sn} 
such that S(x) = (1 —x) X^-o snXn converges for | x\ < 1 and is 
bounded on J, 

f sda - 5(po), 
J N 

where S is the extension of S to J. The Abel method gives rise to a 
translation invariant integration on N. 

In this note we shall study the function and in particular the Fou­
rier analysis of the integration described. Each summation method will 
be identified with the measure or integration on N which it defines. 
All measures will be assumed to be regular summation methods on the 
set of null sequences; if the measure is represen table by a matrix 
(a,nk) this means 

00 

(1) lim an,k = 0, lub 23 I n̂jfc| < «>. 

REMARK. The only countdbly additive summation methods <f> are those 
of the form 

1 This research was supported by NSFG 7686. 
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/

» 00 

sd<f> » ]T) ansn, 
where {an} is a sequence of numbers such that the right-hand side of (2) 
exists. If </> is nonatomicf then it is purely finitely additive [3, p. 163]. 

For each summation method 0 we can define the space £*(</>) of 
sequences such that /j\r|s„|p<20 exists (we identify two sequences s 
and / such that ƒ#( s—t\ pd<j>**0); under the norm \\s\\9** (ƒ#[ s\ pd</>)llp

f 

£p(<l>) is not complete. To obtain a Banach space we let LP(A) consist 
of Cauchy sequences sU) of elements of £p(<j>) such that <t> transform 
of each sU) is bounded and limw,n-*> s(w)~$(n) = 0—we identify 
two elements {s<*>} and {t<*>} of Lp{<j>) if lim^» fN\s^-t^\ *tf0«O, 
where su\ ta) are elements of £p(<t>) for each ƒ With the usual defini­
tion of addition, scalar multiplication, and norm of equivalence 
classes of Cauchy sequences we have 

For p>\ the space Lp(<j>) is a Banach space. For p>l the dual space 
of Lp(<f>) is Lp (0) where l/p + l/p' = l. For each linear continuous 
functional F on Lp(</>) we have 

F(s) - f std4>, t E Lp'(<t>), 
J N 

1111 = (fw*}". 
Henceforth we shall not distinguish between an element a and the 
sequence {a, af • • • } in Lp(<t>). 

By nto we denote the Banach space of bounded sequences 5 with 
norm given by ||s|| =lim sup 15»| (we identify two sequences s and t 
if s—t is a null sequence. The dual of Wo is Ll (<£), where 0 is a summa­
tion method which is regular on null sequences. 

For a linear operator T on a space LP(A) where A is a summation 
matrix to be well defined we must have JN\ Ts\pdA = 0 for all s in 
LP(A) such that JN\S\ pdA = 0. On the other hand 

If A satisfies (1) and T evaluates to zero each sequence s such that 
JN\S\ pdA = 0 then T is well defined. 

If A satisfies (1) and 
(3) T is representable by a matrix (tnk) which evaluates to zero 

each sequence s such that /N\S\ pdA = 0, then T is well defined. More­
over (3) implies 

(4) lubf ; \tnk\ -^oo 
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so that T transforms each space LP(A), p>l, into mo. In this case T 
satisfies 

| | r | | » ' £ l imsup]£ | /„*K 

Henceforth T will be assumed to satisfy (3). If T evaluates to zero 
a sequence 5 in LP(A) (m0) such that /JV|s\pdA>0 (lim sup |sn\ >0) 
then zero is an eigenvalue of T. If T~ (tnk) is a regular summation, 
then T (considered as an operator on LP(A) or m0) has no continuous 
spectrum. For suppose that zero lies in the continuous spectrum of T 
(considered an operator on LP(A)). For each €>0 there is a sequence 5 
such that 115112, = ! and | 2-X& sk\ =^ when n — tij where {%} is a se­
quence containing 70 in its closure. We may adopt Darevsky's tech­
nique [4] to construct a sequence ut not in LP(A), such that 
I ]£XA!^*| ^6 when n = nj. But this means that T does not have a well 
defined inverse; zero cannot lie in the continuous spectrum. The proof 
when T is considered an operator on m0 is even simpler. 

We note that lim»^ ^kk is an eigenvalue of T (whenever this 
limit exists). 

THEOREM. Suppose that the operator T~(tnk) satisfies (3) and (4') 
and there is a set E~ {nj}<ZN such that 

lim X) *n.k - a> l i m 2 *n,& = 0, 
n-* 00. ne JE? KeE »-*oo;n$JB KeJE 

then a is an eigenvalue of T. 

THEOREM. Let Tn{z) = XX»o tnkZk/zn- For each number a in [0, 2ir] 
such that limn-**, Tn(e

ia) exists f this limit is an eigenvalue of T. 

If B = (bntk) is a normal regular summation matrix such that 
n - l 

lim inf | bn,n | — 22 I &».* I > ° 

then B has a reciprocal B~l = (fintk) such that lub{ 23?-o|Pn,k\ } < °°. 
Hence 

If the operator T is representable by a normal summation matrix 
satisfying (4), (4') the spectrum of T is contained in the set 

i\\ liminf I X - tnn\ - £ | tnk\ g 0} . 
V Jfe«0 J 

2. Fourier transforms. For each r, 0 < r < 1, let fx(r, 0) be a measure 
on [O, 27r] such that 
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00 

Mr, 0) = X) fl(n)rnein>M 

so that /x(r, 6) is analytic with respect to Lebesgue measure for each r 
in (0, 1). The Fourier transform 5 of a sequence s is defined as a linear 
functional on a space of measures fx(rt d), and is given by 

(S) l(/i) = I snjX(n)da, 
J N 

where (X is the Abel summation method, whenever the integral on 
the right-hand side of (5) exists. If we define the Mp norm of a mea­
sure jit by 

MU»'« lub \ ' d e t > 
o<^i (J \ se \ ) 

then we have 

THEOREM. If p*z2 then each sequence sÇz£p(&) has a Fourier trans­
form Ê(fx) defined for JUG-M"2*', ||$|| ==||^||P» where \\$\\ denotes the norm of 
s considered as afunctional. If for any pt the sequence sG£p(®) has a 
Fourier transform § such that 

ê(fx) = 0 for all p in Afp>9 

then s = (X 

THEOREM. If the sequence {sn} has the Fourier transform s(/x), then 
for each fixed integer a, the sequence {sn+a} has the Fourier transform 
eias(fx). To each translation-invariant space of sequences V, corresponds 
a subset E of [0, 2T] such that §(IA)=0 when sÇEV and the measure 
li(r, 6) is concentrated on E. 

However, this correspondence is not 1-1. However, if for all in­
creasing subsequence of natural numbers {nk} which tend to infinity 
we have JN{snk exp ink}d& = 0 then ƒ#| s\ dd = 0. Hence 

THEOREM. The space of Fourier transforms of sequence sÇz.Lx(Ç£) 
may be represented as functions defined on sequences {6k} £.i> 0 â 6k < 2TT. 
The sequence s is represented by the function s: 

K6k) = ]C snk exp(i^) = $(/*), 

where 
00 

nk s dk (mod 27r), ^ = » J ] exp[i(w* + 6)]dd. 
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So that the Fourier transforms of sequences s£<£' (Ct) are the con­
tinuous functions on the space © of sequences {#*}, we topologize 
0 by the metric 

d(eil\ek}) « f da, 
JD 

where D={nk\n?&nf}, 

nk ss $k (mod 27r), i = 1, 2 

(note that two sequences {df} such that the corresponding n® agree 
almost everywhere (relative to Cfc measure) must be identified). The 
interval fO, 27r] with the discrete topology can be embedded in ©. 

Multipliers, A function ƒ(#) on [0, 27r] is called a multiplier of the 
space L1 if whenever S(p) is the Fourier transform of a sequence 
s& then the functional §(f dp) is the Fourier transform of some 
sequence tÇzL1 (the symbol ƒ dp denotes the measure with ƒ as its 
derivative). 

THEOREM. The multipliers of m0 are the functions f (6) such that 

ƒ(«) = êa»e** E |*»| -><»; 

/flr eachp>\ the multipliers ofLp(A) are the trigonometric polynomials. 

We conclude with some remarks on sequences s which can be repre­
sented by Fourier series 

CO 

(6) sk = 5 J cn exp(iank), k = 0, 1, • • • ; 
n-0 

such sequences are the almost periodic functions on N. In [l] I pro­
posed the problem: 

Given a sequence of exponents {an} dense in an interval of length 
w/2, does there exist, for each given subset E of N, a series of the form 
(6) which diverges on E and converges on iV—£. By a skillful use of 
Fejer polynomials D. R. Lick has obtained an affirmative answer— 
unfortunately the sequence is not bounded in general. In case the 
exponents an are contained in an interval of length e <fl"/2, then if the 
series (6) diverges for k = k0 it diverges for | k — ko\ â [fr/2e]. If the set 
of exponents {an} has only finitely many limit points, then the series 
(6) converges or diverges for all k according as the series ^\cn| con­
verges or diverges. 
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UNIVERSITY OF MINNESOTA 

THE UNION OF FLAT 0*-l)-BALLS IS FLAT IN Rn 

BY ROBION C. KIRBY1 

Communicated by Eldon Dyer, December 15, 1967 

THEOREM.2 Let jSJ""*1 and jS}""1 be two locally flat (n-l)-balls in Rn 

with /3inj82 = 9j3indj32=:=j3n~~2, where j3n~*2 is an (n—2)-ball which is 
locally flat in dfii and d/32. Then fiiUfii is aflat (n —I)-ball in Rn. 

This result has been announced by Cernavskiï [l], but only for 
n è 5 since his outlined proof uses engulfing. Our proof avoids engulf­
ing and works for all n; a thorough knowledge of Cantrell and 
Lacher's version (see [2, §§4 and 5]) of Cernavskifs theorem is 
necessary to understand our proof. 

We also have another proof of the following corollary which ap­
pears in [4]. 

COROLLARY. Let g : .Mn"~1-*JVn be an imbedding of an (n — l)-manifold 
into an n-manifold which is locally flat except on a set E. If n>3, 
then E contains no isolated points (see [3] for the same result when M 
and N are spheres). 

PROOF. Let C be a neighborhood of an isolated point pin M which 
is homeomorphic to an (» — l)-ball, with g locally flat on C—p. Then 
split C into (n-~ l)-balls C\ and Cz so that C== CxUd and C\C\& is an 
(w-~2)-ball containing p. g is locally flat on C\ and C2 except at the 
point p on their boundaries. Then, since n> 3, g is flat on all of C% and 
C2 by [5], It follows from the theorem that C1UC2 » C is flat, so E has 
no isolated points. 

1 Research supported by NSF Grant 6530. 
2 Added in proof. Cernavskiï has independently proven this theorem by similar 

methods. 


