GERŠGORIN THEOREMS BY HOUSEHOLDER'S PROOF

BY J. L. BRENNER

Communicated by I. Reiner, December 11, 1967
0. The method. Given an $m \times m$ matrix $A=\left[a_{i j}\right]$ of complex numbers, S . Geršgorin [4] proved that every proper value λ lies in the union of the m disks D_{i}, where $D_{i} \equiv\left\{\lambda| | \lambda-a_{i i}\left|<R_{i}, R_{i}=\sum_{j \neq i}\right| a_{i j} \mid\right\}$. Generalizations of this theorem have appeared in several papers, see for example [1], [3], [5], [7], [8], and a convenient summary in [6]. The theorem is derivable from the following (older) result, if we set $B=A-\lambda I$.
Theorem 1. Let $B=\left[b_{i j}\right]$ be a matrix of complex numbers. If B is not invertible, then for some i we must have $\left|b_{i i}\right| \leqq \sum_{j \neq i}\left|b_{i j}\right|=R_{i}$.

Corollary. $\forall_{i}\left\{\left|b_{i i}\right|>R_{i}\right\} \Rightarrow B$ is invertible.
This is the contrapositive of Theorem 1. To prove Theorem 1, find $x=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ so that $B x=0$; choose i so that $x_{i} \neq 0$ and $\forall_{j}\left\{\left|x_{i}\right| \geqq\left|x_{j}\right|\right\}$. Then $\left|b_{i i}\right| \leqq \sum\left|b_{i j}\right| \cdot\left|x_{j} / x_{i}\right| \leqq R_{i}$.

Householder [5, p. 66] looks at the theorem from a different point of view. He writes $B=D-C$, where D is the diagonal part of B, i.e. $D=\left[d_{i j}\right], d_{i j}=\delta_{j}^{i} \cdot b_{i j}$, and C has zero diagonal. If $\forall_{i}\left\{b_{i i} \neq 0\right\}$, then $B=D\left(I-D^{-1} C\right)$. The condition $\left\|D^{-1} C\right\|<1$ guarantees that B be invertible. The corollary follows on applying this condition and using the row-sum norm.

1. A new result. In the preceding paragraph, a known result was recovered by Householder's method. This does not demonstrate the full power of the method. In this section, we obtain a new result by the same method. (This result can be obtained also by other methods; see [2].)

Definition. The notation

$$
B\binom{1 \cdots}{1 \cdots}
$$

means the minor matrix obtained from the large matrix B by retaining only rows $1 \cdots n$ and columns $1 \cdots n$. The notation

$$
B\binom{1 \cdots n}{\{1 \cdots n\} \backslash t, j}
$$

means the minor matrix based on rows $1 \cdots n$ and columns $1 \cdots n$, but with column t omitted and column $j(j>n)$ appended.

Lemma. Let $c_{t k}$ be the t, k element of

$$
W=B\binom{1 \cdots n}{1 \cdots}^{-1}
$$

Then

$$
\left|\operatorname{det}\left\{W B\binom{1 \cdots n}{\{1 \cdots n\} \backslash t, j}\right\}\right|=\left|\sum c_{t k} b_{k j}\right|
$$

Proof. The matrix product Q on the left side of the lemma is equal to the identity matrix except in the t th column, which is replaced by the j th column as shown. The determinant of Q is therefore equal to the t, t element of Q, i.e. the inner product of the t th row of W by the j th column of B.

Theorem 2. Let B be an $m \times m$ matrix of complex numbers; let $S(1)$, $S(2), \cdots$ be a partitioning of $\{1 \cdots m\}$ into disjoint sets. Let

$$
V(r)=\binom{S(r)}{S(r)}
$$

be the (principal) submatrix of B on the rows and columns with indices in $S(r)$. Let

$$
U(r, j, t)=A\binom{S(r)}{S(r) \backslash j, t}
$$

be the submatrix of B that uses rows with indices in $S(r)$, and columns with indices from the same set, but with the column of index j deleted and the column of index t appended.

The matrix B is nonsingular if the following m inequalities hold among certain minor determinants of B :

$$
\forall_{j \in S(r)} \forall_{r}\left\{|\operatorname{det} V(r)|>\sum_{t \in S(r)}|\operatorname{det} U(r, j, t)|\right\}
$$

Remark. If $S(i)=\{i\}$, this theorem reduces to the Geršgorin corollary.

Proof. We write $B=D-C=D\left(I-D^{-1} C\right)$ as before, but interpret D as the block diagonal $V(1)+V(2)+\cdots$ of B. If we apply the lemma (read from right to left) to the matrix $D^{-1} C$, and use rowsum norm in the condition $\left\|D^{-1} C\right\|<1$, Theorem 2 follows.

Corollary. Every proper value of the matrix A lies in one or another of the m loci

$$
\begin{aligned}
& \left|\operatorname{det}\left(\begin{array}{ll}
a_{r, r}-\lambda, & a_{r, r+1} \\
a_{r+1, r}, & a_{r+1, r+1}-\lambda
\end{array}\right)\right| \leqq \sum_{t \neq r, r+1}^{\prime \prime}\left|\operatorname{det}\left(\begin{array}{ll}
a_{r, r}-\lambda & a_{r, t} \\
a_{r+1, r} & a_{r+1, t}
\end{array}\right)\right| \\
& \left|\operatorname{det}\left(\begin{array}{ll}
a_{r, r}-\lambda, & a_{r, r+1} \\
a_{r+1, r}, & a_{r+1, r+1}-\lambda
\end{array}\right)\right| \leqq \sum^{\prime \prime}\left|\operatorname{det}\left(\begin{array}{ll}
a_{r, t} & a_{r, r+1} \\
a_{r+1, t} & a_{r+1, r+1}-\lambda
\end{array}\right)\right|
\end{aligned}
$$

$r=1,3,5, \cdots, m-1$. (If m is odd, the last value of r is $m-2$, and the disk $\left|a_{m m}-\lambda\right| \leqq R_{m}$ must be appended.)

This corollary has been used in numerical analysis, in a case in which complex numbers are replaced by 2×2 matrices.

References

1. A. Brauer, Limits for the characteristic roots of a matrix, Duke Math. J. 19 (1952), 75-91.
2. J. L. Brenner, New root-location theorems for partitioned matrices, Summary Report, \#748, MRC, Madison, Wis., 1967; SIAM J. Appl. Math. 16, No. 3 (1968).
3. D. G. Feingold and R. S. Varga, Block diagonally dominant matrices and generalizations of the Gersgorin circle theorem, Pacific J. Math. 12 (1962), 1241-1250.
4. S. Gerşgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR 7 (1931), 749-754.
5. A. S. Householder, The theory of matrices in numerical analysis, Blaisdell, New York, 1964.
6. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, Mass., 1964.
7. A. M. Ostrowski, Sur les conditions generales pour la regularite des matrices, Rend. Mat. e Appl. 10 (1951), 1-13.
8. O. Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56 (1948), 672-676.
