ON THE BOUNDARY POINT PRINCIPLE FOR ELLIPTIC EQUATIONS IN THE PLANE¹

BY J. K. ODDSON

Communicated by J. B. Diaz, November 27, 1967

1. Let *D* be an open connected subset of E^n $(n \ge 2)$ and denote by $\mathfrak{L}_{\alpha}(D)$ the class of second order uniformly elliptic operators of the form $L = \sum_{i,j=1}^{n} a_{ij}\partial^2/\partial x_i\partial x_j$ with coefficients defined in *D* and satisfying there the condition $\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j \ge \alpha \sum_{i=1}^{n} \xi_i^2$, for some constant α in the range $0 < \alpha \le 1/n$, and the normalization $\sum_{i=1}^{n} a_{ii} = 1$. It is well known [1] - [4] that such differential operators enjoy the following strong minimum and boundary point principles: A nonconstant, twice differentiable function u(x), satisfying $Lu \le 0$ in *D*, cannot attain a local minimum in *D*. Moreover if *u* attains a local minimum at a boundary point x^0 where ∂D has the inner sphere property, and if ν is a unit vector directed internally to the sphere, then

$$\liminf_{\iota\to 0^+} \left\{ \frac{u(x^0+t\nu)-u(x^0)}{t} \right\} > 0.$$

Equivalently, the boundary point principle states that for $||x-x^0||$ sufficiently small there exists a *positive* constant *m* (depending upon ν) such that

$$u(x) \geq u(x^0) + m ||x - x^0||$$

along the line $x^0+t\nu$. In this note we wish to obtain, for the case of a plane domain (n=2), an analogous lower bound for the approach of u(x) to a minimum occurring on the boundary when the inner sphere property is replaced by an inner cone (sector) property. The proof is based upon a comparison with a barrier function which has recently been obtained [5] for the class \mathcal{L}_{α} in a plane sector with the aid of elliptic extremal operators [6]. Our result is the best possible for the class of differential operators \mathcal{L}_{α} and moreover shows explicitly the dependence upon the ellipticity constant α .

2. We shall first describe our barrier function for the plane sector

$$S(\theta_0) = \{(x, y): r > 0, |\theta| < \theta_0 < \pi\}$$

where r, θ denote the polar coordinates of the point (x, y).

¹ Research supported in part by the Air Force Office of Scientific Research under grant AFOSR 1122-67.

FIGURE 1

For the class of differential operators \mathcal{L}_{α} with $0 < \alpha < \frac{1}{2}$ we define the constants $\zeta_1 = \cos^{-1} (1 - 2\alpha) \in (0, \pi/2), \zeta_2 = \pi - \zeta_1$, and

(2.1)
$$\mu = \frac{2(1-2\alpha)}{\cos \zeta + (1-2\alpha)}$$

where:

(i) $\zeta \in (\zeta_1, \zeta_2)$ is the solution of $\zeta \tan \zeta_1 / \tan \zeta + \zeta_2 = 2\theta_0$ if $0 < 2\theta_0 \le \pi$; or

(ii) $\zeta \in (0, \zeta_1)$ is the solution of $(\pi - \zeta) \tan \zeta_1 / \tan \zeta + \zeta_1 = 2\theta_0$ if $\pi < 2\theta_0 < 2\pi$.

For the class $\mathcal{L}_{1/2}$, which consists of the single operator $\{\partial^2/\partial x^2 + \partial^2/\partial y^2\}/2$, we define $\mu = \pi/2\theta_0$.

A sketch of μ as a function of α and θ_0 is shown in Figure 1. Note that μ is a monotone decreasing function of θ_0 and $\mu(\alpha, \pi/2) = 1$.

Next we define the periodic function $C(\theta; \theta_0; \alpha)$ in the parametric form

(2.2)

$$C(\theta; \theta_{0}; \alpha) = \frac{\cos \varphi \{1 - \nu_{1} \cos \varphi\}^{(|\mu-1|-1)/2}}{\{1 - \nu_{2} \cos \varphi\}^{(|\mu-1|+1)/2}}$$

$$\theta = \frac{(4\alpha(1-\alpha))^{1/2}}{\mu} \int_{0}^{\varphi} \frac{d\xi}{(1 - \nu_{1} \cos \xi)(1 - \nu_{2} \cos \xi)}$$

J. K. ODDSON

where

668

$$v_1 = \frac{(|\mu - 1| - 1)(1 - 2\alpha)}{\mu}$$
 and $v_2 = \frac{(|\mu - 1| + 1)(1 - 2\alpha)}{\mu}$

The following properties of $C(\theta; \theta_0; \alpha)$ are easily established:

(2.3)
(a)
$$C(\theta; \theta_0; 1/2) = \cos \mu \theta = \cos(\pi \theta/2\theta_0);$$

(b) $C(\theta; \pi/2; \alpha) = (\cos \theta)/(4\alpha(1-\alpha))^{1/2};$
(c) $C(\theta; \theta_0; \alpha) > 0$ for $|\theta| < \theta_0$ and $C(\pm \theta_0; \theta_0; \alpha) = 0;$
(d) $C(\theta; \theta_0; \alpha) \sim \cos(\pi \theta/2\theta_0)$ as $\theta \to \pm \theta_0.$

The function

(2.4)
$$v(x, y) = r^{\mu}C(\theta; \theta_0; \alpha),$$

positive in the sector $S(\theta_0)$ and vanishing on its sides, is the barrier which we seek. It has been obtained in [5] as a solution of the minimizing equation relative to the class \mathfrak{L}_{α} . It follows from the theory of extremal operators [6] that for every operator $L \in \mathfrak{L}_{\alpha}$ we have

$$Lv(x, y) \geq 0 \quad \forall (x, y) \in S(\theta_0).$$

Furthermore there exists an operator $L' \in \mathfrak{L}_{\alpha}$ such that L'v = 0 in $S(\theta_0)$.

3. We now state our main result.

THEOREM. Let D be an open subset of the plane and let u(x, y) be a nonconstant, twice differentiable function in D which is continuous on \overline{D} and satisfies $Lu \leq 0$ in D for some $L \in \mathfrak{L}_{\alpha}$. Suppose that u attains a local minimum of u_0 at a boundary point P_0 which subtends an open truncated sector S, $S \subset D$, of half angle θ_0 . Then there exists a neighborhood Ω of P_0 and a positive constant m such that

(3.1)
$$u(x, y) \ge u_0 + mr^{\mu}C(\theta; \theta_0; \alpha) \text{ in } \overline{S} \cap \overline{\Omega},$$

where r, θ are polar coordinates measured from the vertex and axis of S and μ , C are defined by (2.1) and (2.2) respectively.

PROOF. Since the class \mathfrak{L}_{α} is invariant under translation or rotation of coordinates there is no loss of generality in assuming P_0 to be the origin and the axis of S to be the x-axis so that r, θ become the usual polar coordinates.

By the hypotheses there exists an R > 0 such that $u \ge u_0$ in $[S(\theta_0)]^- \cap \{r \le R\}$. Since u(x, y) is not identically constant we conclude from the strong minimum principle, the boundary point principle, and the property (2.3)(d) that

[July

(3.2)
$$m = R^{-\mu} \inf_{\substack{S(\theta^0) \cap \{r=R\}}} \left\{ \frac{u(x, y) - u_0}{C(\theta; \theta_0; \alpha)} \right\}$$

is a positive constant. Let us define

$$w(x, y) = u(x, y) - u_0 - mv(x, y)$$

in $[S(\theta_0)] \cap \{r \leq R\}$, where v is our barrier given by (2.4).

In $S(\theta_0) \cap \{r < R\}$ we have $Lw = Lu - mLv \le 0$ while $w = (u - u_0) \ge 0$ on $\partial S(\theta_0) \cap \{r \le R\}$ and, by (3.2), $w \ge 0$ on $S(\theta_0) \cap \{r = R\}$. It follows from the minimum principle that $w \ge 0$ in $[S(\theta_0)]^- \cap \{r \le R\}$, which is the desired result.

REMARKS. (1) Since the barrier function $v = r^{\mu}C(\theta; \theta_0; \alpha)$ is itself a solution of L'u = 0 in $S(\theta_0)$ for some $L' \in \mathfrak{L}_{\alpha}$ our result cannot be improved.

(2) Note that $\mu = 1$ for $\theta_0 = \pi/2$, $\mu > 1$ for $\theta_0 < \pi/2$, and $\mu < 1$ for $\theta_0 > \pi/2$. Thus for $\theta_0 = \pi/2$ our result coincides with that of the boundary point principle. When $\theta_0 < \pi/2$ the difference quotient $(u - u_0)/r$ may tend to zero when $r \rightarrow 0$, as is well known for domains without the inner sphere property. Note however that for $\theta_0 > \pi/2$ this difference quotient is unbounded as $r \rightarrow 0$ so that the theorem implies that no interior directional derivative can exist at a local minimum occurring at the vertex of an obtuse angle.

4. Suppose now that the hypotheses of the theorem hold for an operator L^* of the form

$$L^* = L + b_1 \partial/\partial x + b_2 \partial/\partial y$$

with $L \in \mathfrak{L}_{\alpha}$ and $(b_1^2 + b_2^2)^{1/2} = o\{1/r\}$ as $r \to 0$, where r denotes distance measured from the boundary point P_0 .

Let a fixed $\epsilon > 0$ be given and denote by Ω^* the corresponding neighborhood of P_0 in which $(b_1^2 + b_2^2)^{1/2} \leq \epsilon/r$. Using again the minimizing operator relative to the class \mathcal{L}_{α} it may be shown that there exists a function $T_{\epsilon}(\theta)$, with properties similar to those of (2.3)(c) and (d), such that $v_{\epsilon} = r^{\mu+\epsilon}T_{\epsilon}(\theta)$ is a barrier for L^* in $S \cap \Omega^*$. It follows that our theorem may be extended to the operator L^* , with the conclusion (3.1) replaced by

(4.1)
$$u(x, y) \ge u_0 + mr^{\mu+\epsilon}T_{\epsilon}(\theta) \quad \text{in } \overline{S} \cap \overline{\Omega}.$$

The results (3.1) or (4.1) are also valid for the operators L+c or L^*+c , respectively, if $c \leq 0$ in a neighborhood of P_0 , provided that we assume that the minimum value u_0 is negative. ($u_0 \leq 0$ is sufficient if in addition the growth of |c| is suitably limited near P_0 ; e.g., if c is bounded below.)

5. Our results may also be applied to certain quasilinear equations. As an example let us consider a nonconstant solution $\phi(x, y)$ of the equation of minimal surfaces

$$(1 + \phi_y^2)\phi_{xx} - 2\phi_x\phi_y\phi_{xy} + (1 + \phi_x^2)\phi_{yy} = 0$$

in the sector $S(\theta_0)$. If the gradient of ϕ is bounded

$$(5.1) \qquad |\operatorname{grad} \phi| \leq M$$

then ϕ satisfies the linear equation $L\phi = 0$, where

$$L = \left\{ (1 + \phi_y^2) \partial^2 / \partial x^2 - 2\phi_x \phi_y \partial^2 / \partial x \partial y + (1 + \phi_x^2) \partial^2 / \partial y^2 \right\} / \left\{ 2 + | \operatorname{grad} \phi |^2 \right\}$$

is in the class \mathfrak{L}_{α} with

(5.2)
$$\alpha = 1/(M^2 + 2).$$

If ϕ achieves a local minimum of ϕ_0 at the origin then in a neighborhood of the origin we have, from (3.1) and (5.1),

(5.3)
$$\phi_0 + mr^{\mu}C(\theta; \theta_0; \alpha) \leq \phi(x, y) \leq \phi_0 + Mr, \quad m > 0,$$

where μ and C are defined by (2.1) and (2.2). Note that if $\theta_0 > \pi/2$ then (5.3) yields a contradiction since $\mu < 1$. As a result we may state: A nonconstant minimal surface with bounded gradient cannot attain a local minimum at the vertex of an obtuse angle.

References

1. E. Hopf, Elementare Bermerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, S.-B. Preuss, Akad. Wiss. Berlin 19 (1927), 147-152.

2. ——, A remark on elliptic differential equations of second order, Proc. Amer. Math. Soc. 3 (1952), 791-793.

3. O. A. Oleinik, On properties of solutions of some boundary value problems for equations of elliptic type, Mat. Sb. 30 (1952), 695-712 (Russian).

4. C. Pucci, Proprieta di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico, Rend. Accad. Naz. Lincei (8) 23 (1957); 24 (1958).

5. J. K. Oddson, Some solutions of elliptic extremal equations in the plane (to appear).

6. C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pura Appl. 72 (1966), 141-170.

UNIVERSITY OF CALIFORNIA, RIVERSIDE