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1. Let D be an open connected subset of E» (#=2) and denote by
£.(D) the class of second order uniformly elliptic operators of the
form L= )%, a;;0?/dx.0x; with coefficients defined in D and satis-
fying there the condition ) %, ; agt&;=a > r, £, for some constant
o in the range 0<a=<1/#n, and the normalization > »,a;=1. It is
well known [1]— [4] that such differential operators enjoy the follow-
ing strong minimum and boundary point principles: A nonconstant,
twice differentiable function u(x), satisfying Lz <0 in D, cannot
attain a local minimum in D. Moreover if % attains a local minimum
at a boundary point x° where dD has the inner sphere property, and
if » is a unit vector directed internally to the sphere, then

{u(x" + ) — u(x")}
t

lim inf > 0.

t—bO+

Equivalently, the boundary point principle states that for ||x—x|
sufficiently small there exists a positive constant m (depending upon
v) such that

u(x) = u(x% + m“x - x°“

along the line x°+/p. In this note we wish to obtain, for the case of a
plane domain (#=2), an analogous lower bound for the approach of
#(x) to a minimum occurring on the boundary when the inner sphere
property is replaced by an inner cone (sector) property. The proof is
based upon a comparison with a barrier function which has recently
been obtained [5] for the class £, in a plane sector with the aid of
elliptic extremal operators [6]. Our result is the best possible for the
class of differential operators £, and moreover shows explicitly the
dependence upon the ellipticity constant a.

2. We shall first describe our barrier function for the plane sector
SO = {(x,9):r>0,|8] <8 <=}

where 7, 0 denote the polar coordinates of the point (x, ¥).
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a=1/2

ocali/2

(1-20a)
I-Q

Ficure 1

For the class of differential operators £, with 0 <a < % we define the
constants {1 =cos™! (1 —2a) E(0, 7/2), {o=m—{1, and

2(1 — 2a)

21 =
(1) # cos¢+ (1 — 2a)

where:

(1) ¢E (&, &) is the solution of {tan {1/tan {+{=20,if 0<20,<T;
or

(ii) ¢E€(0, ¢1) is the solution of (r—{)tan {1/tan {+{1=20, if
< 200 <L2T.

For the class &£15, which consists of the single operator
{02/0x24+-02/9y2} /2, we define yu=1m/20,.

A sketch of u as a function of o and 6, is shown in Figure 1. Note
that u is a monotone decreasing function of 6, and u(e, w/2) =1.

Next we define the periodic function C(f; 6o; @) in the parametric
form
cos <p{1 — v COS <p} (lp=1]=1)/2

{1 — vy COS (p} (lu—1]+1) /2
p = (4o(l — a@))1/2 fw dk
)

M (1 —»1cos£)(1 — vacos §)

C(0;60;0) =

(2.2)
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where

(Jp—1] =1 — 20) (e=1] + 01 - 24)
= and v, = .
7 M

V1

The following properties of C(0; 0,; @) are easily established:

(a) C(0;80;1/2) = cos ud = cos(wd/26,);

(b) C(;7/2;a) = (cos 6)/(4a(l — a))'/%;

(c) C(0;00;) >0 for 10| <0 and C(=6;60; ) = 0;
(d) C(6;00; @) ~ cos(wb/26,) as 6 — =+ 6.

I

(2.3)

The function
(24) v(x, ) = rC(0;00; ),

positive in the sector S(6,) and vanishing on its sides, is the barrier
which we seek. It has been obtained in [5] as a solution of the mini-
mizing equation relative to the class £,. It follows from the theory
of extremal operators [6] that for every operator L E£, we have

Lo(z,9) 20 V¥V (x,9) € S(0).

Furthermore there exists an operator L'E&, such that L'v=0 in
S(@,).

3. We now state our main result.

THEOREM. Let D be an open subset of the plane and let u(x, y) be a
nonconstant, twice differentiable function in D which is continuous on
D and satisfies Lu<0 in D for some LESL,. Suppose that u attains a
local mintmum of ue at a boundary point P, which subtends an open
truncated sector S, SCD, of half angle 0y. Then there exists a neighbor-
hood Q of Py and a positive constant m such that

3.1) u(x, y) Zuo+mreC@; 0o; &) in SN,

where r, 0 are polar coordinates measured from the vertex and axis of S
and u, C are defined by (2.1) and (2.2) respectively.

Proor. Since the class £, is invariant under translation or rotation
of coordinates there is no loss of generality in assuming P, to be the
origin and the axis of .S to be the x-axis so that 7, § become the usual
polar coordinates.

By the hypotheses there exists an R>0 such that # =u, in [S 60) ]-
N { r §R} . Since u(x, v) is not identically constant we conclude from
the strong minimum principle, the boundary point principle, and the
property (2.3)(d) that
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3.2) m = R*  inf {
Soyn{r=r}

u(x, y) — “0}
C(0; 60; @)

is a positive constant. Let us define
w(x: y) = u(x, y) — to — mv(x, y)

in [S@)]-N{r=<R}, where v is our barrier given by (2.4).

In S@)N {r <R} we have Lw=Lu—mLv <0 while w= (u—uo) 20
on S@)N {r <R} and, by (3.2), w=0 on S@)N{r=R}. It follows
from the minimum principle that w20 in [S@)]-N {r <R}, which is
the desired result.

REeMARKs. (1) Since the barrier function v =7#C(@; 0o; o) is itself a
solution of L'u=0 in S(@,) for some L'EL, our result cannot be
improved.

(2) Note that u=1 for §y=m/2, u>1 for §y<w/2, and u<1 for
6o>m/2. Thus for ,=m/2 our result coincides with that of the bound-
ary point principle. When 6, <w/2 the difference quotient (u —ug)/r
may tend to zero when r—0, as is well known for domains without the
inner sphere property. Note however that for 8,>m/2 this difference
quotient is unbounded as »—0 so that the theorem implies that no
interior directional derivative can exist at a local minimum occurring
at the vertex of an obtuse angle.

4. Suppose now that the hypotheses of the theorem hold for an
operator L* of the form

with LEEL, and (Gi+b3)Y2=0{1/r} as r—0, where r denotes dis-
tance measured from the boundary point P,.

Let a fixed ¢>0 be given and denote by Q* the corresponding
neighborhood of P, in which (b?+02)1/2<e/r. Using again the mini-
mizing operator relative to the class £, it may be shown that there
exists a function T(0), with properties similar to those of (2.3)(c)
and (d), such that v, =r#+t¢T(f) is a barrier for L* in SNQ*, It follows
that our theorem may be extended to the operator L*, with the con-
clusion (3.1) replaced by

(4.1) u(x,y) = uo + mr+eT(6) inSNQ.

The results (3.1) or (4.1) are also valid for the operators L-c or
L* ¢, respectively, if ¢ =0 in a neighborhood of Py, provided that we
assume that the minimum value %, is negative. (#o=<0 is sufficient if
in addition the growth of [cl is suitably limited near Pg; e.g., if ¢ is
bounded below.)
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5. Our results may also be applied to certain quasilinear equations,
As an example let us consider a nonconstant solution ¢(x, y) of the
equation of minimal surfaces

(1 + $)dee — 20ub48ey + (1 + $)yy = O
in the sector S(6,). If the gradient of ¢ is bounded
(5.1) | grad ¢| =M

then ¢ satisfies the linear equation L¢ =0, where
L= {1+ ¢,)0°/0a" — 2¢.4,9"/dy
+ 1+ ¢:)62/6y2} /{2 + | grad ¢ |2}
is in the class £, with
(5.2) a=1/(M?+ 2).

If ¢ achieves a local minimum of ¢, at the origin then in a neighbor-
hood of the origin we have, from (3.1) and (5.1),

(5.3) ¢ + mr*C(0; 005 @) = (%, v) S ¢o + Mr, m > 0,

where u and C are defined by (2.1) and (2.2). Note that if o> /2
then (5.3) yields a contradiction since u <1. As a result we may state:
A nonconstant minimal surface with bounded gradient cannot attain
a local minimum at the vertex of an obtuse angle.
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