MORE ON RINGS ON RINGS¹

BY IAN RICHARDS

Communicated by Gian-Carlo Rota, March 11, 1968

This note is a sequel to the paper On rings on rings by Anatole Beck [1]. The problem we consider (originally proposed by Paul Rosenbloom) is that of characterizing the parameter ρ for the annulus $\Omega = \{1 < |z| < \rho\}$ in terms of the ring R of bounded analytic functions on this annulus. Beck's solution involves properties of univalent functions, and although the subset of univalent functions in R can be characterized algebraically, it seems preferable to avoid this complication.

THEOREM. Let R be the Banach algebra of all bounded analytic functions on the annulus $\Omega = \{1 < |z| < \rho\}$ endowed with the usual sup norm. Let U be the set of invertible elements in R (i.e., the set of $f \in R$ for which $1/f \in R$), and let H be the set of $f \in R$ which possess nth roots $f^{1/n} \in R$ for all n. Then

(1)
$$\rho = \inf_{f \in U - H} ||f|| \cdot ||f^{-1}||.$$

PROOF. The proof is based on a theorem of Schiffer and Huber (cf. [2]):

Let $f: \Omega \to \Omega$ be analytic and map a generator γ for the homology group $H_1(\Omega)$ onto a curve which is homologous to γ^q . Then q = 0, 1, or -1, and in the last two cases f(z) is a constant multiple of z or 1/z respectively.

To deduce our result, we note first that f(z) = z satisfies $||f|| \cdot ||f^{-1}|| = \rho$. Now suppose that f is an element of U-H such that $||f|| \cdot ||f^{-1}|| < \rho$. Multiplying f by a constant, we can adjust the norms so that $||f|| \cdot ||f^{-1}|| < \rho$ and $||f^{-1}|| < 1$. Then f maps the annulus $\{1 < |z| < \rho\}$ into itself. Since $f \notin H$, $f^{1/n}$ fails to exist for some n, and hence if γ is a generator for $H_1(\Omega)$, $f(\gamma)$ cannot be homologous to zero. Thus by the Schiffer-Huber theorem, f(z) is a constant multiple of either z or 1/z; in either case $||f|| \cdot ||f^{-1}|| = \rho$.

REFERENCES

- 1. A. Beck, On rings on rings, Proc. Amer. Math Soc. 15 (1964), 350-353.
- 2. E. Reich, Elementary proof of a theorem on conformal rigidity, Proc. Amer. Math. Soc. 17 (1966), 644-645.

University of Minnesota

¹ Partially supported by NSF Grant GP-4033.