ANALYTIC DOMINATION BY FRACTIONAL POWERS OF A POSITIVE OPERATOR BY ROE GOODMAN1 Communicated by Gian-Carlo Rota, March 11, 1968 **Introduction.** Let A be an (unbounded) linear operator on a Banach space \mathfrak{F} . An analytic vector for A is an element $u \in \mathfrak{F}$ such that $A^n u$ is defined for all n and $$\sum_{n=0}^{\infty} \frac{\|A^n u\|}{n!} t^n < \infty$$ for some t>0, i.e. the power series expansion of $e^{tA}u$ is defined and has a positive radius of absolute convergence. Nelson [2] introduced and studied the notion of analytic domination of one operator (or a family of operators) by another: A analytically dominates the operator X if every analytic vector for A is an analytic vector for X. In §1 we announce an analytic domination theorem; the hypotheses were suggested by Nelson's treatment of Lie algebras of skew-symmetric operators in [2], while the conclusion was suggested by some results of Kotake and Narasimhan [1]. We apply our theorem in §2 to the characterization of analytic vectors for a unitary representation of a Lie group. 1. Analytic domination. Let \mathfrak{F} be a complex Hilbert space, and A a positive, selfadjoint operator on \mathfrak{F} , which we normalize so that $A \geq I$. If α is a complex number, the operator A^{α} is defined via the operational calculus for selfadjoint operators, and $\mathfrak{D}(A^{\alpha}) \subseteq \mathfrak{D}(A^{\beta})$ if Re $\alpha \geq \operatorname{Re} \beta$. (For any operator T on \mathfrak{F} , $\mathfrak{D}(T)$ will denote its domain of definition.) Let $$\mathfrak{H}^{\infty} = \bigcap_{n=1}^{\infty} \mathfrak{D}(A^n)$$ (the C^{∞} -vectors for A). Then we have the following analytic domination criterion: (adX(A) = XA - AX). THEOREM 1. Let $X: \mathfrak{H}^{\infty} \to \mathfrak{H}^{\infty}$ be symmetric or skew-symmetric. Suppose that for some α , $0 < \alpha < 1$, $$||Xu|| \le ||A^{\alpha}u||,$$ $^{^{\}rm 1}$ This research was supported in part by Air Force OSR Contract #F 44620-67-C-0008. (2) $\|(\operatorname{ad} X)^n(A)u\| \leq n! \|Au\|$ for all $u \in \mathfrak{H}^{\infty}$. Then every analytic vector for A^{α} is an analytic vector for X. The proof of Theorem 1 shows slightly more, namely COROLLARY 1.1. Suppose $u \in \mathfrak{H}^{\infty}$ and $||A^n u|| \leq M^n n^{n/\alpha}$, for some constant M. Then u is an analytic vector for X, and there exists a constant C depending only on M and α such that $||X^n u|| \leq C^n n!$. If we eliminate the assumption of symmetry or skew-symmetry on X, then the proof of Theorem 1 yields (we use the notation (u|v) for the inner product in \mathfrak{S}): COROLLARY 1.2. Suppose $X: \mathfrak{H}^{\infty} \to \mathfrak{H}^{\infty}$ and X has an adjoint $$X^+: \mathfrak{H}^{\infty} \to \mathfrak{H}^{\infty}$$ (i.e. $(Xu|v) = (u|X^+v)$ for $u, v \in \mathfrak{F}^{\infty}$). Suppose conditions (1) and (2) of Theorem 1 are satisfied by both X and X^+ . Then the conclusions of Theorem 1 and Corollary 1.1 hold for X (and for X^+). REMARKS. The case $\alpha = 0$ of the theorem is trivial, since it implies X bounded. The case $\alpha = 1$ is Nelson's analytic domination theorem, [2, Corollary 3.2]. Our proof, roughly speaking, proceeds by first showing that one may replace A by A^{α} in (2), and then applying Nelson's theorem relative to A^{α} and X. The idea of the proof is quite simple: we observe that A^{α} can be expressed in terms of an integral involving $A(A+\lambda)^{-1}$, $\lambda \ge 0$; hence we can estimate $(adX)^n(A^{\alpha})$ in terms of $(adX)^n[A(A+\lambda)^{-1}]$. The precise inequalities, however, are somewhat subtle. Direct norm estimates lead to a logarithmically divergent integral; we must use the symmetry of X and A together with interpolation on suitable fractional quadratic norms in order to obtain the needed a priori estimates for Nelson's theorem. 2. Analytic vectors for unitary representations. Let G be a Lie group, $\mathfrak G$ its Lie algebra, and suppose U is a continuous unitary representation of G on a Hilbert space $\mathfrak G$. To every vector $v \in \mathfrak G$ we associate its trajectory $\tilde v$ under U. We say that v is a C^∞ (resp. analytic) vector if $\tilde v$ is infinitely differentiable (resp. real analytic) as an $\mathfrak G$ -valued function on G, and we denote the corresponding subspaces of $\mathfrak G$ by $\mathfrak G^\infty$ and $\mathfrak G^\infty$. On $\mathfrak G^\infty$, U defines a representation of $\mathfrak G$ by skewsymmetric operators. (See [2].) Let X_1, \dots, X_d be a basis for \mathfrak{G} , and set $\Delta = \sum_{k=1}^d X_k^2$. The operator $U(1-\Delta)$ is symmetric on \mathfrak{F}^{∞} and its closure, which we denote by A, is a positive selfadjoint operator, $A \ge 1$ [2]. Furthermore the space \mathfrak{F}^{∞} of infinitely differentiable vectors for the representation is definable in terms of A, namely $$\mathfrak{H}^{\infty} = \bigcap_{n=1}^{\infty} \mathfrak{D}(A^n)$$ ([2, Corollary 9.3]). Nelson also proved that every analytic vector for A was in \mathfrak{G}^{ω} , by employing his analytic domination theorem. By using our Theorem 1, we can obtain a sharper result. Set $B = A^{1/2}$. Then we have THEOREM 2. \mathfrak{H}^{ω} is precisely the set of analytic vectors for B. Using the more explicit estimates of Corollary 1.1, we obtain COROLLARY 2.1 Let $v \in \mathfrak{H}^{\infty}$. Then $v \in \mathfrak{H}^{\omega}$ if and only if there exists a constant M such that $$||U(\Delta)^n v|| \leq M^n(2n)!$$ for all n. In this case there exists a neighborhood V of 0 in $\mathfrak G$ depending only on M such that $$\sum_{n=0}^{\infty} \frac{1}{n!} U(X)^n v$$ is absolutely convergent for $X \in V$. ## REFERENCES - 1. T. Kotake and M. S. Narasimhan, Regularity theorems for fractional powers of a linear operator, Bull. Soc. Math. France 90 (1962), 449-471. - 2. E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. MASSACHUSETTS INSTITUTE OF TECHNOLOGY