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Let Lp be a Banach function space, i.e. a Banach space of (equiva­
lence classes of) measurable point functions on a (r-finite measure 
space (12, 2 , / i ) , with p being a function norm possessing at least the 
weak Fatou property. The results obtained concern integral repre­
sentations of bounded linear operators from a Banach space 9C to Lp 

and from Lp (or a subspace) to 9C. These results in some cases comple­
ment and in other cases generalize work done in [ l ] , [3], [5], [ó], 
[7], [12], [13]. 

General notation and results on Banach function spaces can for the 
most part be found in the first parts of [ l l ] ; more detailed work is in 
[9]. A few further definitions are needed here. If 9C and y are Banach 
spaces, let B(X, (y) be the space of bounded linear operators from X 
to ty. Distinguish two subrings of 2 as S 0 = { E £ 2 : P(XE) < °° } and 
2o = { E £ S : P'(XE) < °° }. A partition 8 is defined to be a finite dis­
joint collection of non-ju-null members of S0 which are of finite mea­
sure. The "averaged" step function of a member ƒ of Lp is defined as 

^ = Ç ( / B i/i<w*«)x,4. 
A function norm p is said to have property (J) if, for each partition 
8, p ( / g )^p ( / ) . (This is very similar to the levelling property of [5].) 

1. The structure of the space B(X} Lp). 
DEFINITION 1. We define a space of set functions: "Dp 

= {#*(•)!#*(•) ' So'—>9C*, x*(-)x is countably additive and ju-continu-
ous for each #£9C, and Fp(#*(-)) < 00 } where 

/ _ x*(Ei)x \ 
Vp(x*(-)) = sup suppf 2^ / T 7 , XEi). 

The representation of bounded linear operators from 9C to Lp is 
made in terms of this space. 

1 The results announced here are contained in the author's doctoral dissertation 
written at Carnegie Institute of Technology under the guidance of Professor M. M. 
Rao. 
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THEOREM 1. If p' possesses property (J), then there is an isomorphism 
between B(X, Lp) and Vp; moreover, 

y\\T\\ £ W ( . ) ) £ Y i | 2 1 | 
for corresponding elements. 

(The constant y is fixed for each Lp space and has value 0 < 7 ^ 1 
with 7 = 1 if and only if p has the strong Fatou property. It is the 
constant which appears in Theorems 1.1 and 1.2 of [ll].) 

The correspondence is obtained in one direction by defining 
x*(E)x=fETx(u>)dix(u>) for E £ 2 0 ' . In the other direction, a type of 
Radon-Nikodym derivative is used. 

2. The structure of the space B(MP9 9C). Results for B(LP, 9C) un­
fortunately seem not to be, in general, available by the present tech­
niques. Results which will be presented in §3 have been obtained for 
the linear functionals (9C = scalars). In the case of a general 9C, we 
have results for a closed subspace of Lp (which in some common cases 
is all of Lp). 

DEFINITION 2. Let Mp = cl{f(~:Lp: ƒ is bounded and has support 
in So}. 

Note that Mp is a closed subspace which is normal and a sublattice 
(in fact, a lattice ideal). 

DEFINITION 3. We define a space of set functions:^/ = {x(-)\x(-): 
2)0—>9C, x(-) is finitely additive, vanishes on jLt-null sets, and 
Wp' (*(•)) < oo }, where 

/ _ x*x(E.) \ 
Wi(x(-)) = sup supp'C 2* / P N XaJ-

II^Kl 8 \ 8 lx(Ei) 7 

To represent elements of B(MP, 9C) it will be desirable to integrate 
members of Mp against set functions in V?p'. In order to do this, 
Bartle's treatment [2] of integration will be used. 

DEFINITION 4. A measurable function ƒ is integrable over 12 with 
respect to an 9C-valued finitely additive set function x(0 if there is a 
sequence {fn} of simple functions such that 

(0 fn-*f in x(-) measure, 
(ii) Xn(') are uniformly absolutely continuous, and 
(iii) Xn(-) are equicontinuous, 

where X»(E)=/^/ndx for £ G S and where (i), (ii), and (iii) are with 
respect to the semivariation of #(•)• 

The fact that iif^Mp and x(-) G^p then ƒ is x(-) integrable leads 
to the representation theorem: 
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THEOREM 2. If p' has (J), then B(MP, 9C) and V?p' are isomorphic; 
moreover, \\T\\ g Wp (#(•))^"V XĤ "11 for corresponding elements* 

The correspondence is given by Tf=ffdx and x(E) = T{%E) for 
£ G 2 0 . 

COROLLARY» If every member of Mp has absolutely continuous norm, 
then each «(OG'W/ is ^-continuous. 

3. Representation of linear functionals. We have obtained two 
characterizations of L*. One assumes property (J), the other does 
not. Both results proceed by use of the quotient space (Lp/Mp)*. 
Define NP~LP/MP and equip Np with the usual factor norm and order 
(recalling that Mp is a lattice ideal). Denote the canonical map as 
X: LP-^NP. Note that X is continuous, interior, homomorphic (both 
linear and lattice), and has norm ^ 1 . In addition X*: NP-^MP is an 
isometric isomorphic surjection. (Note that Np is an AB lattice, even 
though it is not a Banach function space over the given measure 
space.) In Lp we define the convex, norm-determining and (in general) 
nonlinear subset Lp = {ƒ : ƒ = V?-1 ƒ•, fi = 0, p (ƒ»•) ̂  1, 1 ^ n < oo }. Since 
X is interior, X(ZP) contains the nonnegative elements of the open unit 
ball of Np. I t is here that an assumption is needed: 

CONDITION (I). \(LP) lies in the closed unit ball of Np. (With this 
assumption, Np is an AL space in the sense of Kakutani.) 

The characterization of iV* is in terms of certain additive set func­
tions. Define ba(Q, 2 , /x) to be the collection of bounded additive 
set functions on 2 which vanish on jU-null sets. Denote by ca(Û, 2 , fj) 
the countably additive members of ba(£2, 2 , ja) and by pfa(fi, 2 , fi) 
the purely finitely additive members of ba(£2, 2 , ju). We will need to 
integrate elements of Np with respect to set functions in pfa(0, 2 , JU). 
The integration used is a variant of that found in [14] and [ lS]. 

DEFINITION 5. Let 0 ^ G p f a ( Q , 2 , /x) and 0^fELp. Define !„(ƒ) 
«inf { £?-i||^(/Xtf,-)||K£*-): {-E*} disjoint finite partition of fl}. 

This has all the usually desired properties of an integral and is ex­
tended to all of Lp and pfa(0, 2 , JU) by linearity on the decomposition 
into their positive parts. Note that one could equally well write 
7„(X(jQ) since /„ is constant over cosets. 

THEOREM 3. Assuming that condition (I) holds, there is an isometric 
isomorphism which is also a lattice isomorphism between Np* and a 
closed subspace of pfa(Q, 2 , ix) which shall be denoted as <PP*. The 
isometry is ||s*|| = | v\ (0). 

The correspondence is given by: for PE.(?P', **(X(/)) =/*(ƒ), 
ƒ £ £ , ; for 0S«*GiV*, v(E) = | | 4 | | , £ G 2 ; and for general z*GNp* one 



708 N. E. GRETSKY [July 

uses its decomposition into positive parts. (We denote s|(X(jO) 
~**<X(/)x*).) 

The space (PP' is determined as the range of the (bounded) projec­
tion obtained by composing the correspondence from pfa(B, 2, ix) 
into Np* with that from Np* to pfa(Q, 2, /z). One may describe (Pp>

 a s 

those elements in pfa(Q, 2, JU) whose support lies inside the support 
of a function in Lp which is not in Mp. 

THEOREM 4. The conjugate space Zp* has a direct sum decomposition 
into two closed linear {lattice) subspaces which are seminormal, namely 
into Mp1 and its lattice orthogonal complement (Mf)0-0- which is isometri-
cally linearly and lattice isomorphic to Mp*. Moreover, in the decomposi­
tion, \\x*\\=\\y*\\+\\z*\\ where x*=y*+z* with y*GMp

± and 
z*e(Mp

±)°'°: 

Thus in order to represent Lp* all that is needed is a representa­
tion of Mp*. If p' has property (J), then by Theorem 2, Mp* is iso­
morphic to the space of set functions *<$$= {GIG: S0—»reals, G 
finitely additive on 20, G vanishes on ju-null sets, and V?P>(G) 
= sup8 p'(y£ls(G(Ei)/[i(Ei))xEi)<

co} under the correspondence 
G(E) =X*(XE) for £GSo, and **(ƒ) = JfdG îorfEMp. For correspond­
ing elements, one has \\x*\\ ^WP'(G) SY~x\\x*\\. (It is also true that 
this correspondence is a lattice isomorphism.) 

If we define (V^wJXflV with norm ||(G, *>)|| = WV(G) + M (0) 
and with partial order (G, v) è (0, 0) if G è 0 and v ̂  0, then ap> is a 
Banach lattice and we have: 

THEOREM 5. If condition (I) holds and p' has property (J), then the 
space Lp* is linear and lattice isomorphic to %'. Moreover the cor-
respondence is a topological equivalence. 

There is another characterization of Mp* that is available without 
the assumption that p' has (J). However, this form is not as useful 
since the norm computation does not explicitly involve the associate 
space (although if p' has (J), this approach leads to a norm equivalent 
to the one given above). 

THEOREM 6. There is an isometric isomorphism between Mf and the 
Banach space *ü = {̂ | ^(*) real valued, additive set function onXo which 
vanishes on fx-null sets, and \\v\\ = sup [\ f fdp\ : ƒ simple and p(/)<;i] 
< oo }. Moreover, the members of V are all countably additive if and only 
if every function in Mp is of absolutely continuous norm. 

If we define (Bp* as 1)X<Pp' with norm \\(v, \p)\\ = |MI + M (fi) a n d 
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partial order (v, \f/) 2> (0, 0) if v^O and ^ â 0 , then GV is a Banach lat­
tice and we have: 

THEOREM 7. Under the assumption of (I) alone, the space Lp* is 
linearly and lattice isomorphic to <BP>. Moreover the correspondence is 
an isometry. 

Details and proofs will appear in Trans. Amer. Math. Soc. 
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