REPRESENTATION THEOREMS ON BANACH FUNCTION SPACES

BY NEIL E. GRETSKY1

Communicated by F. E. Browder, December 5, 1967

Let L_{ρ} be a Banach function space, i.e. a Banach space of (equivalence classes of) measurable point functions on a σ -finite measure space (Ω, Σ, μ) , with ρ being a function norm possessing at least the weak Fatou property. The results obtained concern integral representations of bounded linear operators from a Banach space \mathfrak{X} to L_{ρ} and from L_{ρ} (or a subspace) to \mathfrak{X} . These results in some cases complement and in other cases generalize work done in [1], [3], [5], [6], [7], [12], [13].

General notation and results on Banach function spaces can for the most part be found in the first parts of [11]; more detailed work is in [9]. A few further definitions are needed here. If $\mathfrak X$ and $\mathfrak Y$ are Banach spaces, let $B(\mathfrak X, \mathfrak Y)$ be the space of bounded linear operators from $\mathfrak X$ to $\mathfrak Y$. Distinguish two subrings of Σ as $\Sigma_0 = \{E \in \Sigma : \rho(\chi_E) < \infty\}$ and $\Sigma_0' = \{E \in \Sigma : \rho'(\chi_E) < \infty\}$. A partition $\mathfrak E$ is defined to be a finite disjoint collection of non- μ -null members of Σ_0 which are of finite measure. The "averaged" step function of a member f of L_ρ is defined as

$$f_{\varepsilon} = \sum_{\varepsilon} \left(\int_{E_{\varepsilon}} |f| d\mu/\mu(E_{\varepsilon}) \right) \chi_{E_{\varepsilon}}.$$

A function norm ρ is said to have property (J) if, for each partition \mathcal{E} , $\rho(f_{\mathcal{E}}) \leq \rho(f)$. (This is very similar to the *levelling property* of [5].)

1. The structure of the space $B(\mathfrak{X}, L_{\rho})$.

DEFINITION 1. We define a space of set functions: $\mathbb{U}_{\rho} = \{x^*(\cdot) | x^*(\cdot) : \Sigma_0' \to \mathfrak{X}^*, x^*(\cdot)x \text{ is countably additive and } \mu\text{-continuous for each } x \in \mathfrak{X}, \text{ and } V_{\rho}(x^*(\cdot)) < \infty \}$ where

$$V_{\rho}(x^*(\cdot)) = \sup_{\|x\| \le 1} \sup_{\varepsilon} \rho \left(\sum_{\varepsilon} \frac{x^*(E_i)x}{\mu(E_i)} \chi_{E_i} \right).$$

The representation of bounded linear operators from $\mathfrak X$ to L_{ρ} is made in terms of this space.

¹ The results announced here are contained in the author's doctoral dissertation written at Carnegie Institute of Technology under the guidance of Professor M. M. Rao.

THEOREM 1. If ρ' possesses property (J), then there is an isomorphism between $B(\mathfrak{X}, L_{\rho})$ and \mathfrak{V}_{ρ} ; moreover,

$$\gamma ||T|| \leq V_{\rho}(x^*(\cdot)) \leq \gamma^{-1}||T||$$

for corresponding elements.

(The constant γ is fixed for each L_{ρ} space and has value $0 < \gamma \le 1$ with $\gamma = 1$ if and only if ρ has the strong Fatou property. It is the constant which appears in Theorems 1.1 and 1.2 of [11].)

The correspondence is obtained in one direction by defining $x^*(E)x = \int_E Tx(\omega)d\mu(\omega)$ for $E \in \Sigma_0'$. In the other direction, a type of Radon-Nikodym derivative is used.

2. The structure of the space $B(M_{\rho}, \mathfrak{X})$. Results for $B(L_{\rho}, \mathfrak{X})$ unfortunately seem not to be, in general, available by the present techniques. Results which will be presented in §3 have been obtained for the linear functionals ($\mathfrak{X}=$ scalars). In the case of a general \mathfrak{X} , we have results for a closed subspace of L_{ρ} (which in some common cases is all of L_{ρ}).

DEFINITION 2. Let $M_{\rho} = \operatorname{cl} \{ f \in L_{\rho} : f \text{ is bounded and has support in } \Sigma_0 \}$.

Note that M_{ρ} is a closed subspace which is normal and a sublattice (in fact, a lattice ideal).

DEFINITION 3. We define a space of set functions: $\mathfrak{W}_{\rho}' = \{x(\cdot) | x(\cdot) : \Sigma_0 \to \mathfrak{X}, x(\cdot) \text{ is finitely additive, vanishes on } \mu\text{-null sets, and } W_{\rho}'(x(\cdot)) < \infty \}$, where

$$W_{\rho}'(x(\cdot)) = \sup_{\|x^*\| \le 1} \sup_{\varepsilon} \rho' \left(\sum_{\varepsilon} \frac{x^* x(E_i)}{\mu(E_i)} \chi_{E_i} \right).$$

To represent elements of $B(M_{\rho}, \mathfrak{X})$ it will be desirable to integrate members of M_{ρ} against set functions in \mathfrak{W}'_{ρ} . In order to do this, Bartle's treatment [2] of integration will be used.

DEFINITION 4. A measurable function f is integrable over Ω with respect to an \mathfrak{X} -valued finitely additive set function $x(\cdot)$ if there is a sequence $\{f_n\}$ of simple functions such that

- (i) $f_n \rightarrow f$ in $x(\cdot)$ measure,
- (ii) $\lambda_n(\cdot)$ are uniformly absolutely continuous, and
- (iii) $\lambda_n(\cdot)$ are equicontinuous,

where $\lambda_n(E) = \int_E f_n dx$ for $E \in \Sigma$ and where (i), (ii), and (iii) are with respect to the semivariation of $x(\cdot)$.

The fact that if $f \in M_{\rho}$ and $x(\cdot) \in W'_{\rho}$ then f is $x(\cdot)$ integrable leads to the representation theorem:

THEOREM 2. If ρ' has (J), then $B(M_{\rho}, \mathfrak{X})$ and \mathfrak{W}'_{ρ} are isomorphic; moreover, $||T|| \leq W'_{\rho}(x(\cdot)) \leq \gamma^{-1} ||T||$ for corresponding elements.

The correspondence is given by $Tf = \int f dx$ and $x(E) = T(\chi_E)$ for $E \in \Sigma_0$.

COROLLARY. If every member of M_{ρ} has absolutely continuous norm, then each $x(\cdot) \in W'_{\rho}$ is μ -continuous.

3. Representation of linear functionals. We have obtained two characterizations of L^* . One assumes property (J), the other does not. Both results proceed by use of the quotient space $(L_\rho/M_\rho)^*$. Define $N_\rho = L_\rho/M_\rho$ and equip N_ρ with the usual factor norm and order (recalling that M_ρ is a lattice ideal). Denote the canonical map as $\lambda \colon L_\rho \to N_\rho$. Note that λ is continuous, interior, homomorphic (both linear and lattice), and has norm ≤ 1 . In addition $\lambda^* \colon N_\rho \to M_\rho$ is an isometric isomorphic surjection. (Note that N_ρ is an AB lattice, even though it is not a Banach function space over the given measure space.) In L_ρ we define the convex, norm-determining and (in general) nonlinear subset $\tilde{L}_\rho = \{f \colon f = \bigvee_{i=1}^n f_i, f_i \geq 0, \, \rho(f_i) \leq 1, \, 1 \leq n < \infty \}$. Since λ is interior, $\lambda(\tilde{L}_\rho)$ contains the nonnegative elements of the open unit ball of N_ρ . It is here that an assumption is needed:

CONDITION (I). $\lambda(\tilde{L}_{\rho})$ lies in the closed unit ball of N_{ρ} . (With this assumption, N_{ρ} is an AL space in the sense of Kakutani.)

The characterization of N_{ρ}^* is in terms of certain additive set functions. Define ba (Ω, Σ, μ) to be the collection of bounded additive set functions on Σ which vanish on μ -null sets. Denote by ca (Ω, Σ, μ) the countably additive members of ba (Ω, Σ, μ) and by pfa (Ω, Σ, μ) the purely finitely additive members of ba (Ω, Σ, μ) . We will need to integrate elements of N_{ρ} with respect to set functions in pfa (Ω, Σ, μ) . The integration used is a variant of that found in [14] and [15].

DEFINITION 5. Let $0 \le \nu \in pfa(\Omega, \Sigma, \mu)$ and $0 \le f \in L_{\rho}$. Define $I_{\nu}(f) = \inf \{ \sum_{i=1}^{n} ||\lambda(f\chi_{E_{i}})|| \nu(E_{i}) : \{E_{i}\} \text{ disjoint finite partition of } \Omega \}$.

This has all the usually desired properties of an integral and is extended to all of L_{ρ} and pfa (Ω, Σ, μ) by linearity on the decomposition into their positive parts. Note that one could equally well write $I_{\nu}(\lambda(f))$ since I_{ν} is constant over cosets.

THEOREM 3. Assuming that condition (I) holds, there is an isometric isomorphism which is also a lattice isomorphism between N_{ρ}^{*} and a closed subspace of pfa(Ω , Σ , μ) which shall be denoted as $\mathfrak{G}_{\rho'}$. The isometry is $||z^{*}|| = |\nu|$ (Ω).

The correspondence is given by: for $\nu \in \mathcal{O}_{\rho'}$, $z^*(\lambda(f)) = I_{\nu}(f)$, $f \in \mathcal{L}_{\rho}$; for $0 \le z^* \in \mathcal{N}_{\rho}^*$, $\nu(E) = ||z_B^*||$, $E \in \Sigma$; and for general $z^* \in \mathcal{N}_{\rho}^*$ one

uses its decomposition into positive parts. (We denote $z_E^*(\lambda(f)) = z^*(\lambda(f)\chi_E)$.)

The space $\mathcal{O}_{\rho'}$ is determined as the range of the (bounded) projection obtained by composing the correspondence from pfa (Ω, Σ, μ) into N_{ρ}^* with that from N_{ρ}^* to pfa (Ω, Σ, μ) . One may describe $\mathcal{O}_{\rho'}$ as those elements in pfa (Ω, Σ, μ) whose support lies inside the support of a function in \tilde{L}_{ρ} which is not in M_{ρ} .

THEOREM 4. The conjugate space L_{ρ}^* has a direct sum decomposition into two closed linear (lattice) subspaces which are seminormal, namely into M_{ρ}^{\perp} and its lattice orthogonal complement $(M_{\rho}^{\perp})^{\circ,\circ}$ which is isometrically linearly and lattice isomorphic to M_{ρ}^* . Moreover, in the decomposition, $||x^*|| = ||y^*|| + ||z^*||$ where $x^* = y^* + z^*$ with $y^* \in M_{\rho}^{\perp}$ and $z^* \in (M_{\rho}^{\perp})^{\circ,\circ}$.

Thus in order to represent L_{ρ}^* all that is needed is a representation of M_{ρ}^* . If ρ' has property (J), then by Theorem 2, M_{ρ}^* is isomorphic to the space of set functions $W_{\rho'}^{\mathbb{R}} = \{G \mid G \colon \Sigma_0 \to \text{reals}, G \text{ finitely additive on } \Sigma_0$, G vanishes on μ -null sets, and $W_{\rho'}(G) = \sup_{\mathcal{E}} \rho'(\sum_{\mathcal{E}} (G(E_i)/\mu(E_i))\chi_{E_i}) < \infty \}$ under the correspondence $G(E) = x^*(\chi_E)$ for $E \in \Sigma_0$, and $x^*(f) = \int f dG$ for $f \in M_{\rho}$. For corresponding elements, one has $||x^*|| \leq W_{\rho'}(G) \leq \gamma^{-1}||x^*||$. (It is also true that this correspondence is a lattice isomorphism.)

If we define $\mathfrak{A}_{\rho'} = \mathfrak{W}^{R}_{\rho'} \times \mathfrak{O}_{\rho'}$ with norm $\|(G, \nu)\| = W_{\rho'}(G) + |\nu|(\Omega)$ and with partial order $(G, \nu) \geq (0, 0)$ if $G \geq 0$ and $\nu \geq 0$, then $\mathfrak{A}_{\rho'}$ is a Banach lattice and we have:

THEOREM 5. If condition (I) holds and ρ' has property (J), then the space L_{ρ}^* is linear and lattice isomorphic to $\mathfrak{A}_{\rho'}$. Moreover the correspondence is a topological equivalence.

There is another characterization of M_{ρ}^* that is available without the assumption that ρ' has (J). However, this form is not as useful since the norm computation does not explicitly involve the associate space (although if ρ' has (J), this approach leads to a norm equivalent to the one given above).

THEOREM 6. There is an isometric isomorphism between M_{ρ}^* and the Banach space $\mathfrak{V} = \{ \nu | \nu(\cdot) \text{ real valued, additive set function on } \Sigma_0 \text{ which vanishes on } \mu\text{-null sets, and } ||\nu|| = \sup[|\int f d\nu|: f \text{ simple and } \rho(f) \leq 1] < \infty \}$. Moreover, the members of $\mathfrak V$ are all countably additive if and only if every function in M_{ρ} is of absolutely continuous norm.

If we define $\mathfrak{G}_{\rho'}$ as $\mathfrak{V} \times \mathfrak{G}_{\rho'}$ with norm $\|(\nu, \psi)\| = \|\nu\| + |\psi|$ (Ω) and

partial order $(\nu, \psi) \ge (0, 0)$ if $\nu \ge 0$ and $\psi \ge 0$, then $\mathfrak{B}_{\rho'}$ is a Banach lattice and we have:

THEOREM 7. Under the assumption of (I) alone, the space L_{ρ}^{*} is linearly and lattice isomorphic to $\mathfrak{B}_{\rho'}$. Moreover the correspondence is an isometry.

Details and proofs will appear in Trans. Amer. Math. Soc.

REFERENCES

- 1. T. Ando, Linear functionals on Orlicz spaces, Nieuw. Arch. Wisk. (3) 8 (1960), 1-16.
 - 2. R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337-352.
- 3. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392.
- 4. N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Interscience, New York, 1958.
- 5. H. W. Ellis and I. Halperin, Function spaces determined by a levelling length function, Canad. J. Math. 5 (1953), 576-592.
- 6. L. F. Kantorovitch and B. Z. Vulich, Sur la representation des operations lineares, Compositio Math. 5(1938), 119-165.
- 7. G. G. Lorentz and D. G. Wertheim, Representation of linear functionals on Küthe spaces, Canad. J. Math. 5 (1953), 568-575.
 - 8. W. A. J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft, 1955.
- 9. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser A = Indag. Math., Note I, 66 (1963), 135-147; Note II, 66 (1963), 148-153; Note III, 66 (1963), 239-250; Note IV, 66 (1963), 251-263; Note V, 66 (1953), 496-504; Note VI, 66 (1953), 655-668; Note VII, 66 (1953), 669-681; Note VIII, 67 (1964), 104-119; Note IX, 67 (1964), 360-376; Note X, 67 (1964), 493-506; Note XI, 67 (1964), 507-518; Note XII, 67 (1964), 519-529; Note XIII, 67 (1964), 530-543; Note XIV, 68 (1965), 229-248; Note XV, 68 (1965), 415-446; Note XVI, 68 (1965), 646-667.
- 10. ——, Some remarks on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser A = Indag. Math. 59 (1956), 110-119.
- 11. ——, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180.
- 12. M. M. Rao, Linear functionals on Orlicz spaces, Nieuw. Arch. Wisk. 12 (1964), 77-98.
 - 13. ———, Linear functionals on Orlicz spaces: General theory (to appear).
- 14. P. C. Rosenbloom, Quelques classes de problemes extremaux, Bull. Sci. Math. France 79 (1951), 1-58; 80 (1952), 183-215.
 - 15. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.
- 16. J. J. Uhl, Orlicz spaces of additive set functions and set-martingales, Ph.D. thesis, Carnegie Inst. of Tech., 1966.

CARNEGIE-MELLON UNIVERSITY AND UNIVERSITY OF CALIFORNIA, RIVERSIDE

^a Notes XIV, XV, and XVI are by W. A. J. Luxemburg alone.