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The "geometric" subject of compact, connected, flat Riemannian 
manifolds has long ago been "reduced" to purely algebraic questions. 
Such manifolds are determined (up to a connexion preserving diffeo-
morphism) by the isomorphism class of their fundamental groups, A 
precise characterization of those groups which arise in this way is also 
classical. See [4] or [8] for a convenient modern account. Despite 
this, apparently simple geometric questions remain unanswered. One 
such which has intrigued the author and others is this: does every 
compact flat Riemannian manifold bound a manifold of one higher 
dimension? If not, which elements of the cobordism ring can be repre­
sented by such manifolds? It is known [6], [7], of course, that this 
question turns on the values of the Stiefel-Whitney numbers and, in 
the orientable case, the Pontrjagin numbers of the manifold. 

A few general facts are easy to establish. Since the structure group 
of the tangent bundle of any Riemannian manifold is reducible to its 
holonomy group and since the holonomy group of a compact con­
nected flat Riemannian manifold infinite, the Pontrjagin classes are 
all torsion classes. It follows that the Pontrjagin numbers vanish 
(orientability, of course, must be assumed for the statement even to 
make sense). Thus, such a manifold determines a torsion element in 
the oriented cobordism ring. A similar argument shows that if the 
order of the holonomy group is odd, the Stiefel-Whitney classes van­
ish. Thus, in this case the manifold automatically bounds, and if it is 
orientable, bounds an orientable manifold. Such optimism that these 
simple arguments may arouse is restrained by the example [l] of 
Auslander and Szczarba showing that the Stiefel-Whitney classes 
themselves do not always vanish. 

In view of the sharp dependence on the holonomy group, it seems 
reasonable to consider for each finite group, $, the class of compact 
connected flat Riemannian manifolds having holonomy group iso­
morphic to $ . . . <ï>-manifolds for short. 

Recall that the tangent bundle of any differentiable manifold, Xt 

determines the characteristic subalgebra of the cohomology algebra, 
H*(X; R). Here R is any ring of coefficients; when R is the integers 
modulo two, the characteristic subalgebra is generated by the Stiefel-
Whitney classes. One geometric consequence of the algebraic theorem 
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below is this: one can assign an integer, n($), to each finite group $ 
such that the characteristic algebra of any ^-manifold is zero in di­
mensions greater than n(<&). In particular, if the dimension of the 
^-manifold exceeds n(<£)t it necessarily bounds. It follows that for 
fixed <£ only finitely many ^-manifolds can fail to bound. 

A mild variant of the main theorem was conjectured by L. Aus-
lander. I wish to thank him for framing the problem in this way as 
well as for many useful and stimulating conversations on this and 
related topics. 

NOTATION. A Bieberbach group is one having a normal subgroup of 
finite index which is a finitely generated abelian group. The groups 
which arise as fundamental groups of compact connected flat Rie-
mannian manifolds are precisely the torsion-free Bieberbach groups. 
In such a group, those elements having only finitely many conjugates 
make up a normal subgroup of the prescribed type and (for geometric 
reasons) is called the translation subgroup. Its rank is the dimension 
of the group (again the terminology has geometric motivation al­
though it is indeed the homological dimension of the group). The 
corresponding (finite) quotient group is the holonomy group. 

MAIN THEOREM. For each finite group, 3>, there is an integer n(<&) such 
that: if w is a torsion-free Bieberbach group with holonomy group iso­
morphic to $, then the translation subgroup of T contains a normal sub­
group, Nf such that w/N is again a torsion-free Bieberbach group and 
dimension (w/N)^n($). 

COROLLARY 1. Suppose X is a ^-manifold and dimension X>n(<£>). 
Then X fibres over another compact connected flat Riemannian manifold 
having dimension ^ #(<£). Furthermore the fibre is a torus and the tangent 
bundle of X is induced from a bundle over the base manifold. 

COROLLARY 2. If X is a ^-manifold, its characteristic algebra in di­
mensions greater than w(3>) is zero. 

COROLLARY 3. If X is a ̂ -manifold and dim X>n($), then X bounds 
a manifold of one higher dimension. 

COROLLARY 4. For each finite group $ at most finitely many ^-mani­
folds can fail to bound. 

We remark that a relatively simple argument concerning Stiefel-
Whitney numbers shows that whether a ^-manifold bounds or not is 
equivalent to asking the same question about a certain 3>2-rnanifold 
where $2 « the 2-Sylow subgroup of 3>. Corollary 3 can be "improved" 
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by replacing "dim X>n($)" by "dim X > m i n (w(3>), #($2))." So 
little is known about n($), however, that this seems a futile exercise. 
Indeed, the only concrete fact known is that w(Z/2Z) = l and 
n(Z/2Z@Z/2Z)^6. 

The proof of the theorem uses the homological machinery intro­
duced in [2]. In that language, one is given a finite group $ , a $-
module M, and a special point a£if2(<£; M) ; one wants then to show 
that M contains a pure submodule, N, such that rank M/N?£n($) 
and M-+M/N takes a to a special point of iï2(<ï>; M/N). Actually the 
results of [S] were exploited in [3], to handle the case in which * is a 
group of prime order. (The point of view and language of [3] are 
wholly different however.) I t is essentially elementary to pass from 
that special case to the general—the main difficulty being a suitable 
definition of w($). 

REFERENCES 

1. L. Auslander and R. H. Szczarba, Characteristic classes of compact solvmanifolds, 
Ann. of Math. (2) 76 (1962), 1-8. 

2. L. Charlap, Compact flat Riemannian manifolds. I, Ann. of Math. (2) 81 (1965), 
15. 

3. L. Charlap, and A. T. Vasquez, Compact flat Riemannian manifolds. Il, Amer. 
Math. 87 (1965), J. 551-563. 

4. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. 1, 
Wiley, New York, 1963. 

5. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. 
Math. Soc. 8 (1957), 142. 

6. R. Thorn, Quelques propriétés globales des variétés différentiablest Comment. 
Math. Helv. 28 (1954), 17-86. 

7. C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 
(1960), 292-311. 

8. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967. 

CITY UNIVERSITY OF NEW YORK 


