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Introduction. This paper is an announcement of a study on the 
theory of the topological variation of the phase space of one-parame­
ter families of vector fields (ordinary differential equations, flows). 
This theory, sometimes called bifurcation theory, has been developed 
since H. Poincaré from several points of view; see, for example, 
[l]> [z]i [3]» W> [5]. Here, we will be mainly interested in a collec­
tion of one-parameter families of vector fields which has the following 
properties: (a) it is large with respect to all the families, and (b) its 
elements exhibit a topological variation which is amenable to simple 
description. 

Collections with properties (a) and (b) are currently called "ge­
neric" and were introduced in the qualitative global analysis of dif­
ferential equations by M. Peixoto [ó], S. Smale [8], and I. Kupka 
[ l l ] . See S. Smale [9] for a thorough monography on this field. 

The geometry of the set 2 of structurally stable vector fields and 
the study of "generic" one-parameter families of vector fields are 
closely related. A vector field is structurally stable if its phase space 
does not change topologically under small perturbations; a one-
parameter family of vector fields exhibits: the simpler a phase-space 
topological variation, the larger the intersection it has with 2 , or 
equivalently, the smaller the intersection it has with its complement 
—the set of nonstructurally stable vector fields. 

The importance of the set of nonstructurally stable vector fields 
for the study of the topological variation of the phase space of vector 
fields was noticed by A. Andronov and E. Leontovich. In [12] they 
defined the concept of first-order structural stability as a possible 
guide to pursue such study. 

In compact two-dimensional manifolds, the only case considered 
here, the set of first-order structurally stable vector fields is an im­
bedded Banach manifold of class C1 and codimension one of the 
Banach manifold of vector fields; see [13]. This fact, although (as 
follows from [14]) not sufficient to describe completely the "generic" 

1 This work was done with the partial support of the National Science Foundation, 
Grant GP-5603. 
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one-parameter families of vector fields, motivates the main result of 
this paper: There is an immersed Banach submanifold, Si, of class Cx 

and codimension one of the Banach manifold of vector fields with 
Cr-topology, r è 4 , such that the "generic" one-parameter families of 
vector fields intersect it transversally at points where they are not 
vector fields of Kupka-Smale type. This result is stated in a precise 
and complete form in Theorems 1 and 2 ; it answers questions raised 
by M. Peixoto. 

For the proof of these theorems, which will be published elsewhere, 
the characterization of S given by M. Peixoto [7] and the approxima­
tion techniques of I. Kupka and S. Smale, [ i l ] , [10], are essential. 

Preliminary definitions. Let M2 be a C00 two-dimensional compact 
manifold. Call 36r the space of Cotangent vector fields defined on M% 

under the Cr-topology, Denote by <f>x'- RXM*-*M2 the Onflow in­
duced by X&LT. 

DEFINITION 1. Let X and F£# r , r ê 1 ; they are said to be topologi-
cally equivalent if there is a homeomorphism of M1 onto itself sending 
trajectories of X onto trajectories of F. If X has a neighborhood 
N(X) in 3£r such that it is topologically equivalent to every y£:N(X), 
X is said to be structurally stable. 

Denote by S r the set of structurally stable vector fields and denote 
by 3Ei its complement relative to Xr endowed with the induced Cv-
topology. 

DEFINITION 2. A continuous function £: J= [a, b]—>3£r is called a 
one-parameter family of vector fields. A point XQ£ ƒ is said to be an 
ordinary value of £ if for any e>0, it has a neighborhood iV(X0) such 
that £(X) is topologically equivalent to £(X0) for every XEiV(Xo); 
Xo is called a bifurcation value of £ if it is not an ordinary value of £. 

Quasi-generic vector fields. Let pE.M2 be a singular point of 
XEXr, i.e. X(p)=Q. For r ê 1 and any VE&, [V, X](p) depends only 
on V(p). This remark makes it possible to define an endomorphism 
Lp of the tangent space Tp at p. Lp is defined as follows: if vÇETp, let 
F£X r be any extension of it and define Lp(v)~ [V, X](p). The de­
terminant and trace of Lp are denoted respectively by A(X, p) and 
a(X, p). If Lp is an isomorphism, the singular point p of X is said to 
be simple. It is said to be generic if the eigenvalues of Lp have non-
vanishing real parts; if the eigenvalues of Lp are real and have oppo­
site sign, p is called a saddle; if they have equal sign, p is called a 
node; if the eigenvalues have non vanishing imaginary parts, p is 
called a focus. 
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Let Xi and X2 be the eigenvalues of Lp, assume that they are real 
and different and denote respectively by Z\ and T% the eigenspaces 
associated with them. Call respectively wi and T2 the projections of 
Tp onto Ti and T% associated with the splitting TP~ Ti®T2. 

DEFINITION 3. A singular point p of X £ £ r , r ^ 2 , is said to be a 
saddle-node if only one of the eigenvalues of Lv% say Xi, vanishes and 
Ai(X, p, v)?*0, vETu V9*Q, A^X, p, v)v = in[V, [V, X]](p) where V 
is any Cr-extension of v. I t can be proved that the saddle-node is well 
defined. 

Suppose that the eigenvalues of Lp have nonvanishing imaginary 
parts. Let I be a C00 arc on M2 with one extreme at p. I t is classical 
that the flow <j>x defines homeomorphism px: IQ—>I on an /-neighbor­
hood IQ of p; px assigns to qE.Io the point where the semiorbit 
<t>x(t, q), t>0, meets / for the first time; px is of class Cr if X is so. 

DEFINITION 4. (a) A singular point p of X£36 r, r e 3 , is said to be a 
composed focus if px(p) = 1 and Px(p) 3^0. 

(b) A singular point p of XG36r, r^3, is said to be quasi-generic 
if it is either a saddle-node (Definition 3) or a composed focus. 

Suppose that X has a nontrivial periodic orbit through p and let / 
be a C00 arc transversal to X which has p as interior point. The flow 
(j>x defines a homeomorphism TX: /<r-*/ defined on an /-neighborhood 
/o of p; TTx(q) is the point where the semiorbit <f>x(t> q), t>0, meets / 
for the first time, wx is of the same class of differentiability as X and 
is currently called the Poincaré transformation associated with X, 
p, and / . 

DEFINITION S. A periodic orbit of X£36 r, r*zl, passing through 
p is called generic if |TTX(/0| 5^1; it is called quasi-generic if 
either TTX(^)==1, r è 2 , and 7rii)(p)^0 or 7 r x ( ^ ) = ~ l , r e 3 , and 
(7rxO7rx)(8)(^)^0. 

Denote by cox(£) (resp. by ax(p)) the co-limit (resp. the a-limit) 
set of the orbit of X which passes through p. 

DEFINITION 6. (a) If in every neighborhood of p there are points q 
such that o)x(q) T^œxip) (resp. ax{q)9£ax{p))i then the orbit of X 
passing through p is called co separatrix (resp. a separatrix). 

(b) An a and (or) co separatrix is said to be a saddle connection 
(saddle separatrix) if its a and (or) co-limit sets are saddle or saddle-
node singular points. 

(c) If the a and co-limit sets of a saddle connection of X are equal 
to a saddle point q, such that <r(Xt q) 5^0, then the set formed by the 
saddle connection and q is called a simple graph. 

DEFINITION 7. Assume r è 3. (a) Q[ is defined to be the set of Cr-
vector fields which have one quasi-generic singular point, have only 
generic periodic orbits, and do not have saddle connections. 
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(b) Q2 is defined to be the set of Cr-vector fields which have one 
quasi-generic periodic orbit as unique nongeneric periodic orbit, have 
only generic singular points, and do not have saddle connections. 

(c) Ql is defined to be the set of Cr-vector fields which have one 
saddle connection which, in case of being a self-connection is part of 
a simple graph, have only generic singular points and generic periodic 
orbits. 

(d) [K-S] r (Kupka-Smale vector fields) is defined to be the set of 
Cr-vector fields which have only generic singular points, only generic 
periodic orbits, and do not have saddle connections. 

(e) Pr is defined to be the set of Cr-vector fields X for which o>xip) 
and otx(p), for every pQM\ can only be singular points, periodic 
orbits, or graphs, i.e. vector fields for which Poincaré-Bendixon 
theorem is valid. 

Banach submanifolds. Let B be a Banach manifold of class C00 in 
the sense of S. Lang [15, p. 16] ; obviously, # r belongs to this category. 

DEFINITION 8. (a) A subset SQB is said to be an imbedded Banach 
manifold of class Cs and codimension k of B if every pÇzS has a neigh­
borhood N(p) such that there exists a C*-î unction ƒ : N(p)—>Rk such 
that dfp has maximum rank and ^(0) = Sr\N(p). 

(Jo) SQB is said to be an immersed Banach manifold of class C* 
and codimension k of B if there is a countable family {54}ieiv of im­
bedded Banach manifolds of class C* and codimension k of B such 
that SiCSi+i, i&N, and S^UZi S* 

I t is easily verified that Definition 7 implies the definitions of the 
same concepts, as given in [13, p. 19 and 20]. 

DEFINITION 9. <£r is defined to be the set of one parameter families 
of vector fields £: ƒ—>9£r of class C1, under the ^-topology. Obviously, 
$ r is a Banachable space. 

The results. We assume r ^ 4 . 

THEOREM 1. (a) 2i = P r n ( U £ i (£) is an immersed Banach manifold 
of class Cl and codimension one of Xr. 

(b) SJ is dense in 3ÊJ. 
(c) If XE2r

lf there is a ^[-neighborhood N(X) of X such that X is 
topologically equivalent to every Y(E.N(X). 

THEOREM 2. Let Tr be the set of one-parameter families of vector fields 
£ E $ r such that 

(a) É ( J ) C 2 5 U [ X - S ] ' . 
(b) f is transversal to SJ. 
(c) The set of bifurcation values of % is a closed nowhere dense set of J; 

it coincides with /—$""1(Sr). 
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Then, Tr contains a residual subset of$r; in particular, it is a dense 
subset of &r. 
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