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This is the solution of a problem posed by G. Targonski [6, §13 V] : 
Do unbounded strong Carleman operators exist? In fact, we shall 
prove that every strong Carleman operator is a Hilbert-Schmidt 
operator (hence it is certainly bounded). 

1. Definitions and known results. Carleman operators are usually 
defined in the space L2(a, b) where a ^ — oo, ôgoo; without any 
restriction of generality we may assume that •—oo<a<&<oo. There 
are several definitions of a Carleman operator used in the literature 
(e.g. T, Carleman [l], M. Stone [5], G. Targonski [6]; for "semi-
Carleman operators'' see M. Schreiber [4]). We shall mainly follow 
the definition used by G, Targonski, but in addition to his definition 
we shall assume that a Carleman operator is densely defined 
( e * §3). 

DEFINITIONS. A densely defined operator K in the Hilbert space 
L2(a, b) is called a Carlemann operator if it allows a representation 
of the form 

(Kf)(x) = I K(x9 y)f(y)dy for almost all x, 

where Jl \ K(x} y) \ 2dy < oo for almost all x. The domain of K consists 
of all elements ƒ EL2(a, b) such that Jl K(x, y)f(y)dy (which is defined 
for almost all x) represents an element of Lri(a} b). 

An operator K is called a strong Carleman operator if UKU* is a 
Carleman operator for every unitary operator ?7. An operator K in 
a Hilbert space is a Hilbert-Schmidt operator (or K is of Hilbert-
Schmidt type) if for every orthonormal system (<£„), ]Cn|i£<£»| 2 < °° 
(this series has the same value for all complete orthonormal systems). 

It is known (e.g. [ó]) that every Hilbert-Schmidt operator is a 
strong Carleman operator. In [ô] it is also shown that bounded 
strong Carleman operators are of Hilbert-Schmidt type. Using the 
result of this note we may say: An operator in L2{at b) is a strong 
Carleman operator if and only if it is a Hilbert-Schmidt operator. 

We shall use the following known results: 

THEOREM I ([6, LEMMATA 9.1 AND 9.2]). If Kis a strong Carleman 
operator and B is bounded, then BK and KB are strong Carleman 
operators. 
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THEOREM II ([3, SATZ 4] , [6, PROOF OF LEMMA 9.5]). For every 
self adjoint Carleman operator, 0 is a limit point of its spectrum) the 
spectrum of a self adjoint strong Carleman operator has at most the limit 
points — oo, 0 and oo. 

THEOREM III ([2, VI.2.7]). A densely defined closed operator K in a 
Hilbert space can be factorized as K= UT, where T is self adjoint {non-
negative) and U is a partial isometry with initial set C\(R(T)) and 
final set Cl(R(K)) (CI = closure). 

2. Proofs. The proof of our first theorem is almost the same as the 
proof of [6, Theorem 9.2], 

THEOREM 1. Every self adjoint strong Carleman operator is of Hilbert-
Schmidt type. 

PROOF. Let K be a self ad joint strong Carleman operator.Theorem 
II asserts that the spectrum of K consists of a sequence (Xn) of eigen­
values with limit point 0 (and eventually ± oo). Since K is a strong 
Carleman operator there exists for any complete orthonormal sys­
tem (0W) a unitary transformation U and a kernel Ku(x> y) such that 

f \Ku{x,y)\Hy< oo, 
J a 

(UKU*Pn)(x) = XnPn(x), (UKU*f)(x) = f Ku(x,y)f(y)dy 

for almost all x and fGD(UKU*) = UD(K). This implies that 
^npn(x) are the Fourier coefficients of the L2-function Kv(x, y) (as a 
function of y) with respect to the complete orthonormal system (pw). 
Since Ku(x, y) (as a function of 3;) is in L2(af b) for almost all x, this 
implies ]Cw|XnPn(#)| 2 < °° f ° r almost all x. Let us now chose the 
complete orthonormal system 

Pn(%) = (b — a)"112 exp{2irinx/(b — a)} ; 

it follows that ^ W |X» | 2 < °°, i.e. K is a Hilbert-Schmidt operator. 

THEOREM 2. Every Carleman operator is closed. 

PROOF. Let K be a Carleman operator, (un)C.D(K), un—>u, 
Kun—^v. We may write 

(Kw)(x) « Fx[w] for almost all x} w G D(K), 

where Fx is a family of bounded linear functional in L2(a, b). Obvi­
ously 
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(Kun)(x) — Fx[u] = Fx[un] — Fx[u] —> 0 for almost all a. 

By assumption Kun—^v in L2(a, &); hence there exists a subsequence 
(unk) of (ww) such that (Kunk)(x)— v(x)—>0 for almost all x. This im­
plies that v(x) = Pa?[w] for almost all x, i.e. uÇzD(K) and Ku=v. 

THEOREM 3. £^^r^ strong Carleman operator is a Hilbert-Schmidt 
operator. 

PROOF. Let K be a strong Carleman operator; then K is closed by 
Theorem 2. Hence by Theorem III K = UT where T is selfadjoint 
and U is a partial isometry with initial set Cl(R(T)) and final set 
C1(R(K)). Then J7*J7 is a partial isometry with initial and final set 
CI(R(T)), hence T= U*K. By Theorem I T is a selfadjoint strong 
Carleman operator and consequently by Theorem 1 T is of Hilbert-
Schmidt type. Hence K = UT is a Hilbert-Schmidt operator. 

3. Remarks on operators which are not densely defined. It is 
possible to neglect "densely defined" in the definition of a Carleman 
operator. The kernel K(x, y) = g(x)h(y) (g(£L2(a, b), hGL%(at b)) for 
example defines a Carleman operator of this type: 

Kf == 0 if (ƒ, *) - 0 

= not defined if (ƒ, h) ?* 0. 

The main disadvantage of these operators is the fact that the kernel 
is not uniquely determined by the operator (in the above example, 
g is an arbitrary function not contained in L2(a, b)). 

Let K be a strong Carleman operator (in the corresponding sense, 
i.e. not necessarily densely defined) then KP is a strong Carleman 
operator, where P is the orthogonal projection onto Cl(D(K)). Since 
KP is densely defined we may apply the results of §2 and find : KP 
is a Hilbert-Schmidt operator. 

REFERENCES 

1. T. Carleman, Sur les équations intégrales singulières à noyau réel et symétrique, 
Lundequistska Bokhandeln, Uppsala, 1923. 

2. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966. 
3. J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, 

Hermann, Paris, 1935. 
4. M. Schreiber, Semi-Carleman operators, Acta Sci. Math. 24 (1963), 82-86. 
5. M. Stone, Linear transformations in Hubert Space, Amer. Math. Soc. Colloq. 

Publ., vol. 15, Amer. Math. Soc., Providence, R. I., 1932. 
6. G. Targonski, Seminar on functional operators and equations, Springer-Verlag, 

Berlin, 1967. 

INSTITUT FUR ANGEWANDTE MATHEMATIK, UNIVERSITY OF HEIDELBERG 


