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Let I be a countably infinite set, and P={P(¢, 4, j)} a standard
semigroup on I: that is, P(¢) is a stochastic matrix, P(¢+s) =P () P(s),
and

lim P(t,4,4) = P(0,i,4) =1 foralliE I.
t—0

As is well known, Q=P’(0) exists, although ¢(¢) =Q(¢, ) may be
infinite for some or all <. When ¢(i) < «, the numbers ¢(3) and
Q(@4, 7)/q(2) have interesting known probabilistic interpretations, al-
though the meaning of Q(3, j) itself is a little obscure. The object of
this note is to “explain” Q(¢, ) in a way which does not depend on
¢(%), finite or infinite.

To state the explanation, give I the discrete topology, and let
Ui qS} be the one-point compactification. On a suitable probability
triple, say (@, &, P;), construct an I\U {¢ } -valued process X, which is
Markov with stationary transitions P, starts from B&I, and has
smooth sample functions.

More formally, for 0=¢{<#< :++ <t, and 5p=Fk and 4, * + +, %a
in I,
n—1
Pi{X(tn) = im form =0, - - + ,n} = T Pltmss = tm, tmy imi1)-
m=0

Moreover, for each w and all >0, as rational 7 increases to ¢, the
(generalized) sequence X(r, w) has at most one limiting value in I.
(This does not exclude the possibility of having ¢ as a limiting value
or even converging to ¢.) Finally, for each w and all {20, as rational
r decreases to £, there are only two possibilities: either X (¢, w) =¢ and
X (7, w) tends to ¢; or X (¢, w) EI and X (r, w) has precisely one limit-
ing value in I, namely X (¢, w).
As is known, such a construction is always possible.
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Fix 757 in I. Informally, let 8 be the time spent in ¢ while waiting
for the first pseudojump from 7 to j. Formally, let a(w) be the least ¢,
if any, such that X (¢, w) =4, while as rational 7 increases to ¢, the gen-
eralized sequence X (7, w) has < for a limiting value. Let a(w) = « if
no such ¢ exists. Let

B(w) = Lebesgue{t:0 = ¢ £ a(w) and X (¢, w) = i}.

Verify that B is well defined and measurable; of course, B=x is a
possibility.

THEOREM 1. If [{ P(¢, i, 1)dt= », then B is exponentially distributed
with parameter Q(3, j), namely

PB = t} = eeu,

To handle the transient case, introduce the following definitions.
Let [hit <] be the set of w such that X (¢, w) =4 for some ¢=0. Let

7(w) = Lebesgue {#0 < ¢t < © and X(tw) = i}

and

b= fo " PG, i, i)t

THEOREM 2. If [§P(t, 1, 1)dt< ®, then v is exponentially distributed
with parameter P, relative to P;, that is,

P‘{Y g t} == "‘P‘.
Moreover, B is exponentially distributed with parameter
A = p + QG, ) P;(hit 9),

relative to P;. In other words, B/Pi;(a< ») is exponentially distributed
with parameter Q(4, j), relative to P;.

THEOREM 3. Q(¢, j) =0 4ff Pi(a= ) =1,

By arguing more vigorously, it is possible to prove the following
result. For simplicity, suppose [y P(¢, 4, 1)dt= . Let B;, be the time
spent in 7 until the #th pseudojump from 7 to j.

THEOREM 4. The process {Bj,,: n=1,2, - - - } is a Poisson process of
points with rate Q(1, j). As j varies, these processes are independent.

Let K be a finite subset of I, and suppose o =2Z;;Q(¢, k) >0. Let
0 be the time spent in ¢ until the first pseudojump from ¢ to some
kEK.
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CoOROLLARY. The random variable 0 is exponential with parameter o.
The process X pseudojumps from i to jEK before pseudojumping to
any other kEK with probability Q(z, j)/e.

Here is a brief outline of the proof for Theorem 4. I expect to pub-
lish detailed proofs elsewhere. Let { Bn:m=1,2, - -} bea Poisson
process of points with rate g, that is, 81, B2 —B1, B3 —B2, - - - are inde-
pendent and exponentially distributed, with parameter g. Let F be
a finite set, and p a probability on F. Let Z3, Z,, + + - be independent
random variables with common distribution p. Suppose the process Z
is independent of the process 8. For jEF, define a point process
{B,-,.: n=1,2,.-. } as follows: B;, is the nth B, for which Z,, is j.
That is, let ¢(j, #) be the least m for which exactly n of Zy, - « -, Z,,
are equal to j, and let B, =B4¢,n- If p(j) >0, suppose that Z,=j for
infinitely many =, so 8;, is well defined. If »(j) =0, suppose Z, =j for
no #n, and let the process 8; have no points.

PrincipLE. The process {Bj,,: n=1,2, - } is a Poisson process of
points with rate ¢gp(j). As j varies, these processes are independent.

If I is finite, Theorem 4 follows from this principle. Let 8 be the
point process whose inter-point times coincide with the successive
holding times of X in 4. Let F be the set I — {i}. Let Z, =7 if X jumps
to j on leaving the nth ¢-interval.

For infinite I, approximate X by the process X; with finite state
space JCI, obtained by deleting the times ¢ at which X (§) €& J. This
method of approximation has been studied by Levy and Williams.
I expect to discuss it elsewhere.
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