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Let / be a countably infinite set, and P = {P(t, i, j)} a standard 
semigroup on J: that is, P(t) is a stochastic matrix, P(t+s) =*P(t)P(s)f 

and 

lim P(t, i, i) = P(0, i, i) « 1 for all i G / . 

As is well known, Q=P'(0) exists, although q(i)=Q(i, i) may be 
infinite for some or all i. When q(i) < oo, the numbers q(i) and 
Q(i, j)/q(i) have interesting known probabilistic interpretations, al­
though the meaning of Q(i, j) itself is a little obscure. The object of 
this note is to "explain" Q(i, j) in a way which does not depend on 
q(i), finite or infinite. 

To state the explanation, give I the discrete topology, and let 
I^J{<I>} be the one-point compactification. On a suitable probability 
triple, say (0, ïï, P*), construct an J U {$}-valued process X, which is 
Markov with stationary transitions P, starts from feGJ, and has 
smooth sample functions. 

More formally, for 0 = / 0</i< • • • <tn and i0 — k and ii, • • • , in 

in 7, 
n - l 

Pk{X(tm) = im for m = 0, • • • , n] = 1 1 P(Wi — *m, im, Wi). 
m*»0 

Moreover, for each co and all />0, as rational r increases to t, the 
(generalized) sequence X(r, co) has at most one limiting value in I. 
(This does not exclude the possibility of having 0 as a limiting value 
or even converging to <p.) Finally, for each o> and all /âO, as rational 
r decreases to /, there are only two possibilities: either X(t, co) =<£ and 
X(r, co) tends to 0; or X(t, co) £2" and X(r, co) has precisely one limit­
ing value in J, namely X(tt co). 

As is known, such a construction is always possible. 
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Fix i?£j in / . Informally, let /3 be the time spent in i while waiting 
for the first pseudojump from i to j . Formally, let a(w) be the least t, 
if any, such that X(t, œ) =j, while as rational r increases to t, the gen­
eralized sequence X(r, co) has i for a limiting value. Let a(u>) = oo if 
no such t exists. Let 

/?(co) « Lebesgue{tf:0 g / s£ <x(w) andX(/, w) — i}. 

Verify that j8 is well defined and measurable; of course, /3=©o is a 
possibility. 

THEOREM 1. If JoP(t, i, i)dt~ oo, then /3 is exponentially distributed 
with parameter Q(i, j), namely 

Pi{p à *} - «rW>«. 

To handle the transient case, introduce the following definitions. 
Let [hit i] be the set of w such that X(t, w) =i for some £è0. Let 

y(oû) = Lebesgue {/: 0 g / < oo and X(/, w) » i} 

and 

ƒI 00 

P(t, f, i)<fc 
0 

THEOREM 2. If f*P(t, i, i)dt< oo, then y is exponentially distributed 
with parameter p, relative to Pif that is, 

Pi{y à /} = e~*K 

Moreover, /? is exponentially distributed with parameter 

\ = p + Q(i,j)Pi(hiti), 

relative to Pi. In other words, fi/Pi(a< oo) is exponentially distributed 
with parameter Q(i, j), relative to Pt% 

THEOREM 3. Q(i, j) = 0 iff P{(a = oo ) = 1. 

By arguing more vigorously, it is possible to prove the following 
result. For simplicity, suppose f£P(t, i, i)dt~ oo. Let j3yn be the time 
spent in i until the nth. pseudojump from i to ƒ 

THEOREM 4. The process {^jn:n = \,2, • • • } is a Poisson process of 
points with rate Q(i, j). As j varies, these processes are independent. 

Let K be a finite subset of / , and suppose o-=2*€*()(i, k)>0. Let 
0 be the time spent in i until the first pseudojump from i to some 
kEK. 
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COROLLARY. The random variable 6 is exponential with parameter o\ 
The process X pseudojumps from i to jÇzK before pseudojumping to 
any other kGK with probability Q(i, j)/<x. 

Here is a brief outline of the proof for Theorem 4. I expect to pub­
lish detailed proofs elsewhere. Let {/3n: n = l, 2, • • • } be a Poisson 
process of points with rate g, that is, |8i, 182—ft, 183—182» • • • are inde­
pendent and exponentially distributed, with parameter q. Let F be 
a finite set, and p a probability on F. Let Zi, Z2, • • • be independent 
random variables with common distribution p. Suppose the process Z 
is independent of the process /3. For jÇzF, define a point process 
{&•»: » = 1, 2, • • • } as follows: (3jn is the nth (im for which Zm is j . 
That is, let <j>(j, n) be the least m for which exactly n of Zi, • • • , Zm 

are equal t o j , and let jSyr^/^o». If p(j)>Q, suppose that Zn*=j for 
infinitely many n, so j8yn is well defined. If p(j) = 0, suppose Zn ~j for 
no n, and let the process (3j have no points. 

PRINCIPLE. The process {ftn: n = 1, 2, • • • } is a Poisson process of 
points with rate qp(j). As j varies, these processes are independent. 

If I is finite, Theorem 4 follows from this principle. Let /3 be the 
point process whose inter-point times coincide with the successive 
holding times of X in i. Let F be the set /— {i}. Let Zn =j if X jumps 
to j on leaving the nth i-interval. 

For infinite / , approximate X by the process Xj with finite state 
space JC.I, obtained by deleting the times / at which X(t)^J. This 
method of approximation has been studied by Levy and Williams. 
I expect to discuss it elsewhere. 
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