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BY SOLOMON LEFSCHETZ 

INTRODUCTION 

As my natural taste has always been to look forward rather 
than backward this is a task which I did not care to undertake. Now, 
however, I feel most grateful to my friend Mauricio Peixoto for 
having coaxed me into accepting it. For it has provided me with my 
first opportunity to cast an objective glance at my early mathemati
cal work, my algebro-geometric phase. As I see it at last it was my 
lot to plant the harpoon of algebraic topology into the body of the 
whale of algebraic geometry. But I must not push the metaphor 
too far. 

The time which I mean to cover runs from 1911 to 1924, from my 
doctorate to my research on fixed points. At the time I was on the 
faculties of the Universities of Nebraska (two years) and Kansas 
(eleven years). As was the case for almost all our scientists of that day 
my mathematical isolation was complete. This circumstance was 
most valuable in that it enabled me to develop my ideas in com
plete mathematical calm. Thus I made use most uncritically of early 
topology à la Poincaré, and even of my own later developments. 
Fortunately someone at the Académie des Sciences (I always sus
pected Emile Picard) seems to have discerned "the harpoon for the 
whale" with pleasant enough consequences for me. 

To close personal recollections, let me tell you what made me turn 
with all possible vigor to topology. From the p0 formula of Picard, 
applied to a hyperelliptic surface $ (topologically the product of 4 
circles) I had come to believe that the second Betti number R2($) = 5, 
whereas clearly i?2($) = 6. What was wrong? After considerable time 
it dawned upon me that Picard only dealt with finite 2-cycles, the 
only useful cycles for calculating periods of certain double integrals. 
Missing link? The cycle at infinity, that is the plane section of the 
surface at infinity. This drew my attention to cycles carried by an 
algebraic curve, that is to algebraic cycles, and • • • the harpoon was 
in! 

My general plan is to present the first concepts of algebraic ge
ometry, then follow up with the early algebraic topology of Poincaré 
plus some of my own results on intersections of cycles. I will then 
discuss the topology of an algebraic surface. The next step will be a 
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summary presentation of the analytical contributions of Picard, 
Severi and Poincaré leading to my work, application of topology to 
complex algebraic geometry concluding with a rapid consideration 
of the effect on the theory of abelian varieties. 

This is not however a cold recital of results achieved duly mod
ernized. To do this would be to lose the "autobiographical flavor" 
of my tale. I have therefore endeavored to place myself back in time 
to the period described and to describe everything as if I were telling 
it a half century ago. From the point of view of rigor there is no real 
loss. Analytically the story is fairly satisfactory and to make it so in 
the topology all that is needed is to accept the results amply described 
in my Colloquium Lectures [lO]. 

To place the story into focus I must say something about what we 
knew and accepted in days gone by. That is I must describe our early 
background. 

In its early phase (Abel, Riemann, Weierstrass), algebraic geometry 
was just a chapter in analytic function theory. The later development 
in this direction will be fully described in the following chapters. A 
new current appeared however (1870) under the powerful influence 
of Max Noether who really put "geometry" and more "birational 
geometry" into algebraic geometry. In the classical mémoire of Brill-
Noether (Math. Ann., 1874), the foundations of "geometry on an 
algebraic curve" were laid down centered upon the study of linear 
series cut out by linear systems of curves upon a fixed curve ƒ {x, y) = 0. 
This produced birational invariance (for example of the genus p) 
by essentially algebraic methods. 

The next step in the same direction was taken by Castelnuovo 
(1892) and Enriques (1893). They applied analogous methods to the 
creation of an entirely new theory of algebraic surfaces. Their basic 
instrument was the study of linear systems of curves on a surface. 
Many new birationally invariant properties were discovered and an 
entirely new and beautiful chapter of geometry was opened. In 1902 
the Castelnuovo-Enriques team was enriched by the brilliant per
sonality of Severi. More than his associates he was interested in the 
contacts with the analytic theory developed since 1882 by Emile 
Picard. The most important contribution of Severi, his theory of the 
base (see §12) was in fact obtained by utilizing the Picard number 
p (see §11). 

The theory of the great Italian geometers was essentially, like 
Noether's, of algebraic nature. Curiously enough this holds in good 
part regarding the work of Picard. This was natural since in his 
time Poincaré's creation of algebraic topology was in its infancy. 
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Indeed when I arrived on the scene (1915) it was hardly further along. 
About 1923 I turned my attention to "fixed points" which took me 

away from algebraic geometry and into the more rarefied air of topol
ogy. I cannot therefore refer even remotely to more recent doings in 
algebraic geometry. I cannot refrain, however, from mention of the 
following noteworthy activities: 

I. The very significant work of W. V. D. Hodge. I refer more 
particularly to his remarkable proof that an w-form of Vq which is 
of the first kind cannot have all periods zero (see Hodge [13]). 

II. The systematic algebraic attack on algebraic geometry by 
Oscar Zariski and his school, and beyond that of André Weil and 
Grothendieck. I do feel however that while we wrote algebraic 
GEOMETRY they make it ALGEBRAIC geometry with all that 
it implies. 

References. For a considerable time my major reference was the 
Picard-Simart treatise [2]. In general however except for the writings 
of Poincaré on topology my Borel series monograph [9] is a central 
reference. The best all around reference not only to the topics of this 
report but to closely related material is the excellent Ergebnisse 
monograph of Zariski [ l l ] . Its bibliography is so comprehensive 
that I have found it unnecessary to provide an extensive one of 
my own. 

TABLE OF CONTENTS 
I. GENERAL REMARKS ON ALGEBRAIC VARIETIES 

1. Definition. Function field 857 
2. Differentials 858 
3. Differentials on curves 858 

II. TOPOLOGY 
4. Results of Poincaré 860 
5. Intersections 860 
6. The surface F. Orientation 861 
7. Certain properties of the surface F. Its characteristic 862 
8. One-cycles of F 863 
9. Two-cycles of F 864 

10. Topology of algebraic varieties 865 
III. ANALYSIS WITH LITTLE TOPOLOGY 

11. Emile Picard and differentials on a surface 866 
12. Severi and the theory of the base 867 
13. Poincaré and normal functions 869 

IV. ANALYSIS WITH TOPOLOGY 
14. On the Betti number Ri 872 
15. On algebraic two-cycles 872 
16. On 2-forms of the second kind 874 
17. Absolute and relative birational invariance 875 
18. Application to abelian varieties 876 



i968] A PAGE OF MATHEMATICAL AUTOBIOGRAPHY 857 

I. GENERAL REMARKS ON ALGEBRAIC VARIETIES 

1. Definition. Function field. I t was the general implicit or ex
plicit understanding among algebraic geometers of my day that an 
algebraic n-variety Vn (n dimensional variety) is the partial or com
plete irreducible intersection of several complex polynomials or "hy-
persurfaces" of a projective space Sn+k, in which Vn had no singular
ities (it was homogeneous). Thus Vn was a compact real 2w-manifold 
M2n (complex dimension n). I t could therefore be considered as its 
own Riemann manifold as I shall do throughout. 

For convenience in analytical operations one customarily repre
sents Vn by a general projection in cartesian 5 n + 1 

(1.1) F(xu x2, • • • , Xn, y) = 0, 

where F is an irreducible complex polynomial of degree m. In this 
representation, the variety, now called F, occupies no special position 
relative to the axes.1 As a consequence (1.1) possesses the simplest 
singularities. For a curve they consist of double points with distinct 
tangents, for a surface: double curve with generally distinct tangent 
planes along this curve. 

Incidentally, the recent brilliant reduction of singularities by 
Hironaka [12] has shown that the varieties as just described are 
really entirely general. 

Returning to our Vn the study of its topology will lean heavily 
upon the properties of the pencil of hypersurfaces {Hv\ cut out by 
the hyperplanes y = const. The particular element of the pencil cut 
out by y — c is written Hc. As my discourse will be mostly on surfaces 
I will only describe (later) certain pecularities for varieties. 

Function field. Let the complex rational functions R(xi, • • • , xn* y) 
be identified mod F. As a consequence they constitute an algebraic 
extension of the complex field K written K(F), called the function 
field of F. 

Let F* be the nonsingular predecessor of F in Sn+k and let 
(«x» • • • » Mn+k) be cartesian coordinates for 5n+A . On F* they de
termine elements £&, h^n+k of K(F). The system 

uh == h> h g n + k 

is a parametric representation of F*. F* is a model of K(F). 
Any two models JFX*, F* are birationally equivalent: birationally 

transformable into one another. The properties that will mainly 
1 That is, F has only those singularities which arise from a general projection on 

5 n + l of a nonsingular VnGSn+k. 
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interest us are those possessing a certain degree of birational invari
ance (details in §17). 

Terminology. Since only algebraic curves, surfaces, varieties will be 
dealt with, I drop the mention "algebraic" and merely say curve, . . . . 

The symbol Vn represents a (usually complex) n dimensional vector 
space. 

2. Differential forms. Let a, 0, • • • , denote elements of the func
tion field K(F). I shall refer to various differentials: zero, one, two, 
• • • forms co°, co1, co2, * • • , in the sense of Élie Cartan of type 

0)k = X) a<i..--,fc&x<i ' ' ' aai» 

every a in K(F), as zero, one, two, • • • , forms. They are calculated 
by the rules of calculus, remembering that the daj are skew-sym
metric, that is dftda — "-dad/3. 

Note that dœk is an co*4"1 called exact and that if dœk = 0 one says that 
co* is closed. 

Special terms are: o>k is of the first kind when it is holomorphic 
everywhere on F; of the second kind when it is holomorphic at any 
point of F mod some da; of the third kind if neither of the first nor of 
the second kind. 

The evaluation of the number of kinds one or two constitutes one 
of the main problems to be discussed. 

3. Differential forms on a curve. Let the curve be 

(3.1) ƒ(*, y) « 0 

and let m be its degree. We refer to it as "the curve / . " Under our 
convention, ƒ has no other singularities than double points with dis
tinct tangents and is identified in a well-known sense with its Rie-
mann surface. Its one-forms are said to be abelian. An adjoint to ƒ is 
a polynomial </>n(xt y) (n is its degree) vanishing at all double points. 

The following are classical properties: 
One-forms of the first kind. They are all reducible to the type 

They form a Vp, where 2p~Ri, the first Betti number of the Riemann 
surface/. Of course the collection {0m_3} forms likewise a Vp. 

One-forms of the second kind. Same type of reduction to (3.2) 
mod a Jco°, save that 0m..8 is replaced by some <f>8. Their vector space 
mod dK(f) is a V2*>. 
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One-forms of the third kind. They have a finite number of logarith
mic points with residues whose sum is zero. 

Some special properties of one-forms of the first kind. Let 

(3.3) yp = £ <*#*(*, y) = 0 
h**Q 

be a linear system of polynomials linearly independent mod ƒ and of 
common degree. Let the general \f/ intersect ƒ in a set of points 
Pi , • • • , P8 which includes all the variable points and perhaps some 
fixed points. The collection of all such sets is a linear series of degree 
n and dimension r. The series is complete when its sets do not belong 
to an amplified series of the same degree: designation gr

n (concepts 
and terminology of Brill and Noether). 

(3.4) THEOREM OF ABEL. Let du be any one-form of the first kind; 
let {Ph} be any element of a gT

n and let A be a fixed point off. Then with 
integration along paths on ƒ : 

• P A 

du = v 
A 

is a constant independent of the element {Ph} of gT
n. 

Still another classic, a sort of inverse of Abel's theorem is this: 

(3.5) THEOREM OF JACOBI. Let {duh} be a base for the one-forms of 
the first kind. Then for general values of the constants Vh (exceptions 
noted) the system 

p /» Pk 

X) I dun = vk 
k=lJ A 

in the p unknowns Pk, k^pf has a unique solution. 

Periodic properties. Let {duh} be as just stated and let {yl}, 
fx ^2p be an integral homology base (see (5.4)) for the module of 
one-cycles of ƒ. The expression 

Thm = I dun 
J yl 

is the period of fduh as to the cycle 7^. Let the matrix 

II = [TI>] ; h, n g 2p; nh+p,» = iïhM h â P-

By means of integration on the Riemann surface ƒ, Riemann has 
obtained the following comprehensive result (formulation of Scorza) : 
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(3.6) THEOREM OF RIEMANN. There exists an integral skew-sym
metric 2pX2p matrix M with invariant factors unity such that 

(3.7) flUni'-^ o J, (A* = Af) 

is a positive definite hermitian matrix. 

Riemann matrices. This is the name given by Scorza to a matrix 
like II satisfying a relation (3.7) except that M is merely rational 
skew-symmetric. The theory of such matrices has been extensively 
developed by Scorza [6]. He called M: principal matrix of II. 

I t may very well happen that there is more than one rational skew-
symmetric matrix M satisfying a relation (3.7) but without neces
sarily the positive definite property. These matrices are called singu
larity matrices. They form a rational vector space whose dimension k 
is the singularity index of the Riemann matrix (Scorza). 

II . TOPOLOGY 

4. Results of Poincaré. Let Mn be a compact orientable w-manifold 
which admits a cellular subdivision with au fe-cells (well-known prop
erty for varieties). The characteristic is the expression 

(4.1) X(M*) = E ( - 1 ) W 

The following two relations were proved by Poincaré: 

(4.2) x(M») = E ( - l ) * £ * 

(4.3) Rk = Rn-k 

where Rk is the &th integral Betti number of Mn: maximum number 
of linearly independent fe-cycles with respect to homology ( = with 
respect to bounding). 

5. Intersections. In my work on algebraic geometry I freely used 
the intersection properties described below; they were actually justi
fied and proved topologically invariant a couple of years later in my 
paper in the 1926 Transactions and much more fully in [10]. 

Let Mn be as before and let yp and yq be integral p- and g-cycles of 
Mn. One may define the intersection yv-y* and it is a (p+q — n)-cycle. 

(5.1) If yp or YS'M) (bounds), then also 7^73/M). 
The more important situation arises when p+q = n. The intersec

tion (geometric approximation) is then a zero-cycle 

C° - E sjAj 
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where the s,- are integers. The intersection number 

(7p,7n-p) = £ * 

is independent of the approximation. One proves readily 

(5.2) (Y*, yn~*>) = (-l)(»-i>)i>(7»-*>, 7 P ) . 

A basic result is: 

(5.3) THEOREM. A n.a.s.c. in order that \yp~0% X-^0 is that 

(yPf 7n-p) _ 0 

for every yn~p [9, p. 15], [10, p. 78]. 

(5.4) HOMOLOGY BASE. The collection {7^}, h^Rp is a homology 
base for the ^-cycles when the yv

n are independent and every yp 

satisfies a relation 

\y
p ~ ]£ shyP

h, X ^ 0. 

(5.5) A n.a.s.c. in order that the {yl}, h^Rp be a homology base for 
p-cycles is the existence of a set of Rp cycles {il"*} such that the de
terminant 

Then {yïT*} is likewise a homology base for (n—p)-cycles. 

6. The surface F. Orientation. Let P be a point of F and let 
u=*uf+iu", v—v'+iv" be local coordinates for P. Orient F by 
naming the real coordinates in the order uf, u'\ v\ v". There results 
a unique and consistent orientation throughout the surface F. Hence 
F is an orientable If4. 

Similarly if C is a curve of F and u is a local coordinate at a non-
singular point Q of C. The resulting orientation turns C into a definite 
two-cycle, still written C. 

Let D be a second curve through Q, for which Q is nonsingular and 
not a point of contact of the two curves. Then Q contributes + 1 to 
both the intersection number (C, D) and to the number [CD] of 
geometric intersections of C and D. This holds also, through certain 
approximations when Q is a multiple intersection. Hence always 

(6.1) (C, D) = [CD]. 

I will return to these questions later. 
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7. Certain properties of the surface F. Its characteristic. To be a 
little precise let for a moment F* denote the nonsingular predecessor 
of F in projective Sk+2. One may always choose a model F* of the 
function field K(F) whose hyperplane sections are in general of a 
fixed genus p>0. We pass now to a cartesian representation of 
degree m: 

(7.1) F(x, y, s) = 0 

which is a general projection of F* and in particular in general posi
tion relative to the axes. The general scheme that follows is due to 
Picard. Let \Hy) be the pencil cut out by the planes y = const., and 
let a,h, h^Nf be the values for which the planes y = ah are tangent to 
F. Then the following properties hold : 

I. Every Hyy y not an aki is of fixed genus p. 
II . Every Hy is irreducible. 
I I I . The plane y = ak has a unique point of contact Ak with F and 

A k is a double point of Hak with distinct tangents. Hence the genus of 
Hak is p-\. 

IV. Among the branch points of the function z(x) taken on Hv 

exactly two ~»Ak as y~>ak. 
V. The fixed points Pi , • • • , Pm of Hy are all distinct. 
I denote by Sy the sphere of the complex variable y. 
Characteristic. Cover Hy with a cellular decomposition among 

whose vertices are the fixed points Ph of the curve. 
Then if Hy* = Hy— ]L)PA, x(H^)^2—2p—m. Decompose also Sy 

into cells with the ak as vertices. Were it not for these points, and 
since a sphere has characteristic two, Hv* promenading over Sy would 
generate a set E = SyXH^ of characteristic 

x(£*) - 2(2 - 2* - m). 

Now in comparison with H*> Hak has lost two one-cycles, and has 
two points replaced by one. Hence 

x ( < ) * X(H*) + 1. 

Upon remembering to add the missing points Ph we have then 

(7.2) X(F) = xCE*) + N + M= (N -tn-4p) + 4 = 7 + 4 

a formula due to J. W. Alexander (different proof). The number 
I = N—rn—4:p is the well-known invariant of Zeuthen-Segre. 
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8. One-cycles of F. The first step was taken by Picard who proved 
this noteworthy result: 

(8.1) THEOREM. Every one-cycle 7 1 of Fis ^ a cycle 7 1 contained in 
an Hv. 

The next important observation made by Picard was that Hy con
tained a certain number r of one-cycles which are invariant as y 
varies. Tha t is such a cycle 7 1 situated say in Ha (a not an ak) has 
the property that as y describes any closed path from a to a on the 
sphere Sy the cycle 7 1 returns to a position 7 W 7 1 in Hy. This draws 
attention to the nature of the variation Vy1 of any cycle 7 1 under the 
same conditions. 

Draw lacets aak on Sy. Owing to (7, IV) as y describes aak a certain 
cycle 5\ of Hy tends to the point of contact Ak of the plane y — ak 

and hence is ~ 0 on Hak. This is the vanishing cycle as y—>ak. A simple 
lacet consideration shows that as y turns once positively around ak 

the variation "Ü71 of the cycle 7 1 is given by 

(8.2) Vy = (71, dt)il 

Hence 

(8.3) THEOREM. N.a.s.c. for invariance of the cycle 7 1 is that every 

(y\ »i) - 0. 

A noteworthy generalization is obtained when 7 1 is replaced by a 
one-chain L uniquely determined in term of y provided that y crosses 
no lacet.2 As y turns as above around ak the variation of L is 

(8.4) V(L) = (L, foil 

Noteworthy special cases are 
I. L is an oriented arc joining in Hy two fixed points of Hy. 
II , Let C be an algebraic curve of F and let Mi, • • • , Mn be its 

intersections with Hy. Then L is a set of paths from a Pj to every 
point Mh in Hy. 

(8.5) THEOREM. The number of invariant cycles of Hy is equal to the 
Betti number Ri(F) and both are even: r — Ri — 2q. 

2 In modern terminology, L will be a relative cycle. 
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This property was first proved in [7], although it was often ad
mitted before. I give here an outline of the proof (not too different 
from the proof of [7]).8 

To make the proof clearer I will use the following special notations: 
T a 3-cycle of F; {l\} base for the F s ; y — THv: (one-cycle of Hv); 
{oih}, h^2p% base for one-cycles of Hv; 
\l3j}tj^2p—r, base for the one cycles of HVf none invariant; /3 any 

linear combination of the &; 
Matrices such as [(&, r^)]^ will be written [pT]F-
Proof that r—Ri. y=THy is invariant; conversely 7 invariant is a 

THy. Moreover 7 ^ 0 in Hy and T^O in F are equivalent. Hence {7^}, 
h^Ri, is a base for invariant cycles and therefore r = Ri. 

Proof that r is even. Since no /? is invariant, [j3ô] is of rank 2p—r. 
Hence there exist 2p — r cycles S which are independent in Hv. Denote 
them by ôh, h^2p—r. Since (ykfa) =0 for every fe, the S& depend on 
the & in Hv. Hence one may take {7^; ô&} as base for the one-cycles 
of Hy. Hence 

is nonsingular. It follows that [77] is likewise nonsingular. Since it is 
skew-symmetric, a well-known theorem of algebra states that r 
is even. 

9. The two-cycles of F. From the expression (7.2) of the charac
teristic we have 

X(F) = / + 4 - R2 - 2RX + 2. 

Hence 

(9.1) R2 = I + 2R! + 2. 

Besides this formula it is of interest to give an analysis of the 2-cycles. 
Given a y2 one may assume it such that it meets every Hy in at 

most a finite set of points. Let Q be one of these and let P, Q be a 
directed path from the fixed point P to the point Q in Hy. Call L the 
sum of these paths. As y describes Sv— ^ lacets aak, L generates a 
3-chain Cz whose boundary dCz consists of these chains: 

(a) As y describes aak the vanishing one-cycle d\ of Hv generates 
a 2-chain A& whose boundary 

8 The point here is to prove that an invariant cycle, which is also a vanishing cycle, 
is necessarily zero. 
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dAk = («in.. 

The corresponding contribution to dCz is /^A*, where (Zariski) 

(9.2) /xi = (L, ôi), ^ = (L + Miô2 + • • • + /i*-i3*-i> $*)• 

(b) A part (£T0) of # a . 

(c) - 7 s 5 itself. 

Hence 

^C3 = ~ 72 + E M*A* + (fla) ~ 0 

and so 

(9.3) 7 2 ~ I > A A + ( # « ) . 

Since the right side is a cycle, and y = a is arbitrary we have 

(9.4) Z w J i ^ O i n # y . 

Conversely when (9.4) holds, (9.3) is a 2-cycle. Thus to obtain i?2 it is 
merely necessary to compute the number of linearly independent 
relations (9.4) and add to them one unit for all fik zero, that is for the 
cycle Ha itself. This yields again (9.1). 

For purposes of counting certain double integrals Picard required 
the number of finite 2-cycles independent relative to homologies in 
F—H,». This is the number R2(F—H) and he found effectively 

(9.5) R2(F - B) = R2 - 1. 

10. Topology of algebraic varieties. I have dealt with it at length 
in both [8] and [9]. Questions of orientation and intersection are 
easily apprehended from the case of surfaces. I shall only recall here 
a few properties that are not immediate derivatives from the case 
of a surface. 

The designations Vn, Hv are the same as in Chapter I. The follow
ing properties are taken from [9, Chapter V] . The symbol yk will 
represent a fe-cycle of Vn. 

I. Every yk, k<n — l, of Hv is invariant. 
11. Every 7*, k<nf of Vn is ~yk' in Hy. 
III. When k^n — 2, 7*^0 in Vn and yk'~Q in Hv are equivalent 

relations. 
IV. Under the same conditions Rk(Vn) =Rk(Hv). 
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III. ANALYSIS WITH LITTLE TOPOLOGY 

This is a rapid résumé of the extensive contributions of Picard, 
Severi and Poincaré upon which I applied topology (see IV), I will 
continue to consider the same surface F and all notations of II. 

11. Emile Picard and differentials on a surface. During the period 
1882-1906 Picard developed almost single-handedly the foundations 
of this theory. His evident purpose was to extend the Abel-Riemann 
theory and this he accomplished in large measure. Reference: Picard-
Simart [2]. 

Picard studied particularly closed co1, that is 

co1 = adx + &dy, da/dy = d/3/dx 

and co2. The choice of closed co1 is very appropriate since then /co1 is an 
element of K(F), and analytic function theory plus topology are 
fairly readily available.4 

For closed one-forms the same three kinds as for abelian differen
tials are distinguished, save that for the third kind logarithmic curves 
replace logarithmic points. 

Significant results are 
I. Closed one-forms of the first kind make upa*D3 (Castelnuovo) 

(q~%Ri as I have shown). 
II . For the second kind same property save that they form &V2q 

mod dK(F). (Picard) 
I I I . Regarding the third kind Picard obtained this noteworthy 

result: There exists a least number p ^ l such that any set of p + 1 
curves are logarithmic for some closed co1 having no other poles. 

The 2-forms admit again three kinds: (a) first kind: holomorphic 
everywhere; (b) second kind: holomorphic to within a dœ1 about each 
point; (c) the rest. The third kind is characterized by the possession 
of periods: residues over some 2-cycle y2 bounding an arbitrarily small 
neighborhood of a one-cycle on a curve. 

The 2-forms of the first kind were already found by Max Noether. 
They are of the type 

Q(x, y y z)dxdy 
co2 = 

Fi 
where Q is an adjoint polynomial of degree rn— 4. These co2 (or the 
associated Q) make up a Vpa, where pg is the geometric genus of F, 
studied at length by Italian geometers. 

4 Strictly speaking, fœ1 is in K(F) only if w1 has no residues or periods, but since 
dwls=0, fca1 is invariant under a continuous variation in the path of integration. 
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Let et)po be the vector space of the co2 of the second kind mod dœ1. 
Picard utilized his topological description of finite 2-cycles to arrive 
at the following formula: 

(11.1) po = / + 4 < ? - p + 2. 

12. Severi and the theory of the base. The central idea here is a 
notion of algebraic dependence between curves on the surface F. I must 
first describe this concept. 

Let the nonsingular surface F be in an Sk+2. A linear system of 
hypersurfaces of the space cuts out on F a linear system of curves | C\. 
This system is complete if its curves are not curves of an amplified 
linear system. 

We owe to the Italian School the following property: Every suffi
ciently ample complete system \c\ is part of a collection {c} of 
oo « such systems. The elements | C\ of the collection are in an 
algebraic one-one correspondence with the points of an abelian vari
ety Vq

t unique for F and called sometimes the Picard variety of F 
(see § 18). 

A system {C}, oo2 a t least, without fixed points and with irreduci
ble generic curve is said to be effective. I ts curves are also called 
effective. 

Note the following properties: 
(a) An effective system is fully individualized by any one of its 

curves. 
(b) The generic curves of an effective system have the same genus, 

written [C]. 
(c) The curves C, D of two effective systems intersect in a set of 

distinct points whose number is denoted by [CD], In particular we 
write [C2] for [CC] and [C2] is the degree of C.8 

(d) With C, D as before let two curves C, D taken together be 
individuals of an effective system {A}. This system is unique and 
we write 

(12.1) A = B + C. 

(e) Any two curves Ai, A2 of an effective system {A} may be 
joined in {A} by a continuous system oo1 of curves of {Â}, whose 
genus, except for those of Ai and A%, is fixed and equal to [A], 

As an application of (e) let A, B, C be effective and A =B + C. 
Following Enriques, connect A to B + C as indicated in (e). There 
follows a relation 

6 This degree should not be confused with the degree of C as an algebraic curve in 
projective space. 
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X(A) + [BC] - x(B) + x(C) - [BC\. 

Hence if we define 

4>{A) - X{A) + [A*] = 2 - 2[A] + [A*], 

we verify at once that 

4(A) = <j>(B + C) = 0(2?) + 0(C). 

That is 004) is an additive function on effective systems. 
When (12.1) holds between effective systems we set 

C = A - B 

and we have 

0(C) - 4>(A - J5) « 0(.4) - 0(5). 

Note also that as regards the symbols [BC] we may operate as with 
numbers, that is 

[(B ± C)D] - [BD] ± [CD]. 

Virtual systems: Let {-4}, {B} be effective systems. Without 
imposing any further condition define a virtual system {C} = {A —B} 
as the pair of symbols (0(4)-0CB)}, [(A-B)*]. This defines 
automatically [C] and [C2]. It is also clear that they are the same for 
A —B and A +D — (B +D) whatever D effective. In other words {C) 
depends only upon the difference A — B. The symbol {C} is called a 
virtual algebraic system of curves and [C], [C2] are the related virtual 
genus and degree. 

It may very well happen that while A, B are effective there exist 
curves C, not necessarily effective such that B + C (B together with C) 
is a member of {A}. If so C is considered as a curve of the virtual 
system {C} and has virtual characters [C] and [C2], not necessarily 
its actual characters. 

If we define {o} = {^4—^4}, as a virtual curve 0 is unique. One 
readily finds that [0] = 1, [02] =0. 

To sum up, the totality of effective and virtual curves form a 
module Ms over the integers: the Severi module. Within Af» a relation 

(12.2) Xxd + • • • + X8C8 = 0 

has a definite meaning. It is a relation of algebraic dependence between 
curves of F in the sense of Severi. 

The following remarkable result was proved by Severi: 
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(12.3) THEOREM OF SEVERI. The module of curves of F has a base 
consisting of p effective curves Ci, Ci, • • • , Cp, where p is the Picard 
number relative to closed w1 of the third kind. 

That is any curve C satisfies a relation 

XC = Xxd + • • • + XPC, 

where X and the Xj» are integers and XT^O. 
Severi also proved 
(12.4) The base may be chosen minimal, that is such that 

XC = X 2~* XftCft. 

Moreover there exist effective curves Di, D2, • • • , Z)<r-i such that actually 

C = X ^hCh + 23 MiA*. 

One assumes, as one may that <r is the least possible. 
Severi also proved the following criteria: 
(12.5) A n.a.s.c. in order that the curves G, C2, • • • , C8 be algebrai

cally independent is that, with H a plane section, the matrix 

[[CH C*]l 

l[Ch H]l 
be of rank s. 

(12.6) N.a.s.c. in order that { Ch}, h^p, be a base is that the determi
nant I [Ch Ck ] I T^O and that its order p be the highest order for which this 
holds. Moreover, p is the Picard number. 

13. Poincaré and normal functions. Through an ingenious applica
tion of the theorems of Abel and Jacobi Poincaré arrived at a rapid 
derivation of some of the major results of Picard and the Italian 
geometers. I shall mainly deal with the part referring to Severi*s 
theory of the base. 

Let me first put in a most convenient form due to Picard and 
Castelnuovo the co1 of the first kind of the curve Hv. A base for them 
may be chosen of type 

Q8(x, y, z)dx 
(13.1) du$ = ; s g p 

Fi 
where Q8 is an adjoint polynomial of degree m — i in x and z. For the 
first p— q the polynomial is of degree m — 3 in x, y and z. For s — p—q 
+ 1, • • - , p, it is of degree m — 2 in x, y, z. Actually within this last 
range one may choose the Qh so that the dUh only have constant pe-
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riods relative to the invariant cycles and zero relative to the rest. 
As for the first p —q they will have zero periods relative to the invari
ant cycles. 

Let C be a curve on F and Mi, • • • , Mn its intersections with Hy. 
The sums from a fixed point P i of Hy to the Mk 

ƒ> M 

Pi 

Mk 

du8 = v9, s ^ p , 

(integration in Hy) are Poincaré's normal functions. 
Let L be the set of integration paths and with h\ as in (8) let 

(13.2) Qk8 = I dus. 

Then with the ixk as in (9.2) we find 

fxk Çak Qkh(Y)dY 

(13.3) " ~ liriJa Y-y 

vp-q+j = ay(constant) j = 1, 2, 

^ = la — I — A = 1, 2, • • • , # - g 
2 ^ J f l F — y 

REMARK. The only condition imposed upon the points Mk is that 
they be rationally defined together on Hy. They may represent for 
example the following special cases: (a) any sum of multiples of the 
fixed points Ph of Hy, in particular they may represent just fxPh; (b) if 
C is reducible say C= C1 + C2 with Mm and M2h as respective intersec
tions one might have any set h^Mih+h^Mthi and similarly for 
several reducible curves; (c) any combination of the preceding two 
cases. In what follows, "curve" must be understood to include all 
these special cases. 

As usual when dealing with abelian sums the v9 are only determined 
mod periods of the related u8. 

(13.4) THEOREM OF POINCARÉ, N.a.s.c. to have a set of v8 given by 
(13.3) represent a curve by means of Jacobïs inversion theorem are 

(13.4a) X) M*M<0 = 0 , s = 1, 2, • • • , ƒ>. 
h 

(13.4b) Let P(x, y, z) be any linear combination of the P8(x, y, z) 
divisible by y—a and let 

P(x, y, z)dx 
du = ; 

Fi 
k(y) = I du. 
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Then one must have 

/

» ak 

Q*(y)dy = 0. 
a 

(13.5) Comparison with Seven's results. Let the collection {/xs} 
of the fxe occurring in any set of normal functions be designated by JLU 
The collection {/x} is a module U. Let Z70 be the submodule of all 
the elements ju° corresponding to the ^hPh, h an integer. The quo
tient Z7i= U/Uo is the factor-module corresponding to all the curves 
which are not a plane section or more generally a 2j/yP/. The Ui 
module has a base made up of p — 1 algebraically independent curves 
and a minimum base consisting of p+<r —2 curves. By adding the 
At (27) one has respectively p and p+<r —1 for base and minimum base. 

The quotient module Ui = U/ U0 is the module of all ju of curves 
none a plane section 27. The module Ui+H~MP is the Poincarê 
module and it is isomorphic with the Severi module M8. 

(13.6) REMARK. In order to get rapidly to the "heart of the matter" 
I have assumed at the outset that in (13.1) the polynomials Qp-ç+y 
were of degree m — 2 in x, y, z. This was based upon rather deep 
results of Picard and Castelnuovo. Poincarê however merely assumed 
that the degree of Qp-a+i was m — 2+j>y. As a consequence in (13.3) 
the constants ay must be replaced by polynomials aj(y) of degree v$. 
Then Poincarê shows that on the strength of the theorems of Abel and 
Jacobi every *>y = 0 hence the aj(y) must be constants and one has in 
fact the form (13.3). 

Notice also that from the form of the Qm-3+y one may find another 
adjoint polynomial Rm-z+j of degree m — 3 in y, z and m — 2 in x, y, z 
such that 

Qm~.%+jd% + Rm-$+jdy 

is a closed o)1 of the first kind. The set {dwj} is then shown to be a 
base for such differentials. This proves rapidly that their "indepen
dent number" is q. Finally since the ay are arbitrary constants the 
form of (13.3) shows implicitly that a complete (maximal) algebraic 
system of curves consists of oo« linear systems in one-one correspon
dence with the points of an abelian q dimensional variety (see IV, §17). 

In outline this shows how normal functions enabled Poincarê to 
obtain with ease a number of the major results of Picard and the 
Italian geometers. 
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IV. ANALYSIS WITH TOPOLOGY 

14. On the Betti number Ri. In II I recalled my proof that Rx is 
even and Ri = 2q, the number of invariant cycles of the curve Hy. 
This gave incidentally a direct topological proof that the number of 
independent one-cycles in any curve of a sufficiently general system 
was fixed and equal to Ri. I t showed also that the irregularity q of a 
surface, in the sense of Castelnuovo and Enriques was actually a 
topological character. As I will show in §17, a topological proof that 
q is an "absolute invariant" is immediate. Notice also that the dis
tribution of complete algebraic systems in oo « linear systems, referred 
to in (13.6) is also shown to have topological character. 

(14.1) Let {duk}, k^g, be a base for the closed co1 of the first kind 
of F. On Hy they coincide with the up-q+h of §13. Let Wk», M^2#, 
be the periods of uk relative to a homology base {yl}, M^2g, for 
the one-cycles of F. From the fact that the periods of the differentials 
of the first kind of Hy form a Riemann matrix, we infer: 

(14.2) THEOREM. The matrix w of the periods of the Uk and their con-
jugates ük as to the y\ is a Riemann 2qX2q matrix. 

15. On algebraic two-cycles. A collection of mutually homologous 
2-cycles is a homology class. In this manner algebraic cycles yield 
algebraic homology classes. Through addition they generate a module 
ML* Thus in relation to the collection of curves on a surface F there 
are three definite modules: Ms (Severi module), MP (Poincaré 
module) and ML (Lefschetz module). 

(15.1) THEOREM. The three modules Ms, Mp and ML (ire identical. 

This property will be a final consequence of an extensive argument. 
Returning to Poincaré's normal functions (III, §13) a glance at 

his two conditions for a set of normal functions to represent an alge
braic curve reveals immediately that Poincaré's first condition simply 
means that 

I 2L, M*8* ~ 0 in Hy 

is a cycle. As to the second condition it says merely that if 

Q(x, y, z)dxdy 
or = 

F: 
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is of the first kind, that is if Q is adjoint of order m —4, then 

f co2 = 0. 

Hence Poincaré's conditions are equivalent to the following result: 

(15.3) THEOREM. A n.a.s.c. for a cycle y2 to be algebraic is that the 
period of every 2-forrn of the first kind relative to y2 be zero. 

(15.4) REMARK. Among all the "algebraic" curves there were in
cluded all the sums ^nijPj, where the Py are the fixed points of Hy. 
I t is evident that for these special "2-cycles" /co2 is zero. 

(15.5) COROLLARY. Seven's number a is merely the order of the tor
sion group of the two-cycles (or equally of the torsion group of the one-
cycles). 

For if y2 is a torsion 2-cycle we have X7 2^0, X?^0, and hence 

J y2 

for every co2 of the first kind. 

(15.6) THEOREM. The number p is the Betti number of algebraic 
cycles. 

This is a consequence of the following property: 
(15.7) Let Ci, • • • , C8 be a set of curves and let Ch be the cycle of Ch* 

Then 
P a : algebraic independence of the Ch 
Ph: homology independence of the Ch 

are equivalent properties. 
From obvious considerations P a implies Ph. Conversely let Ph 

hold. We must show that ÔM) implies XC = 0, XT^O. Here I follow 
Albanese's rapid argument. Let C~A— B, A and B effective. Since 
2~B and [CD] = (C, D) we have 

[A2] - [AB] = [B2h [AH] - [BB] 

where H is a plane section. Hence Seven's independence criterion 
is violated between A and B. Consequently X̂ 4 =fxBt X/z^O. From 
[AH]=*[BH] follows X = M and therefore \(A -B) =0=XC, X^O. 
This proves (15.7). 

I t follows that Ms-ML and as MP = Ms, (15.1) is proved. 
Notice that we may now give the following very simple definition 
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of virtual curve: it is merely an algebraic 2-cycle. Simplicity is even 
augmentable by replacing everywhere the symbol = of algebraic 
dependence ( = ) by the homology symbol ~. 

16. On 2-forms of the second kind. The basic result is the proof 
of the formula 

(16.1) po = R2- p. 

I shall just indicate an outline of my proof. I shall also show that the 
process outlined obtains incidentally Picard's fundamental result 
for p concerning logarithmic curves of a closed co1 of third kind. The 
steps follow closely an analogous outline in my monograph [<>]. 

For convenience I call co1 and co2 regular when 

Pdy — Qdx Pdxdy 
0)1 = ; CO2 = ; 

4>(y)Fl *(y)Fi 

where P and Q are adjoint polynomials and c/>(y) is a polynomial. 
If œ2 = do)1

i o)2 is said to be improper. Thus p0 is the dimension of 
the vector space of the co2 of the second kind mod those which are 
improper. 

By reduction of co2 I understand the subtraction of an improper co2. 
I. The periods and residues of a normal 2-form are arbitrary. 
I I . One may reduce any co2 of the second kind to the regular type. 
III. A regular o)2 such that /co2 has neither residues nor periods is 

reducible to a regular dœ1* 
Except for the presence of the polynomial (f>(y) the proofs of the 

preceding propositions are very close to those of Picard. I t is true 
that allowing $(3/) in regular co1 and co2 considerably simplifies every 
step (see [9, Note I]) . 

IV. Let C be a curve of order s. We may choose coordinates such that 
C does not pass through any of the fixed points Pj of Hy, nor through the 
points of contact of the planes y — ak. One may form an o)l~Rdx> 
R(E.K{F) possessing on Hy the s-logarithmic points of CHy with logarith
mic period 2iri and say P\ with logarithmic period — 2wis. One may even 
select R so that (dR/dy)dx has no periods. From this follows that there is 
an S(x, y} z) ÇzK(F) such that 

co2 = d(Rdx + Sdy) 

is regular. 
Take now Ci, Cz, • • • , C* and the axes so chosen that they all 

behave like C. Let cojï be analagous to co2 for Ch. 
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Owing to HI it is now readily shown that n.a.s.c. in order that some 
linear combination 

be without periods is that the Cs and H be logarithmic curves of a 
closed co1. 

Since i?2 is finite there is a least p —1 such that for s = p the curve 
Ch, H are logarithmic curves of a closed co1 of the third kind. Hence 

(16.2) Picard1s fundamental property for p is a consequence of the 
finiteness of the Betti number i?2. 

V. To proceed one may form p — 1 linearly independent co2 which are 
improper. Since the total number of distinct periods is equal to R2(F—H) 
= jR2"-"l we have then p0 = i?2 —p, as asserted. 

(16.3) On Picard's treatment ofpo and p. Owing to lack of topological 
technique Picard proved directly that po was finite by showing 
through strong algebraic operations that if 

9 Q(x, y> *)dxdy 
CO2 = 

F: 

where Q is adjoint, is of the second kind, the degree of Q was bounded. 
Although Picard did not observe it, his later treatment of co2 of the 

second kind contained implicitly (argument of 16.2) the proof that 
p had the property by which he defined it relative to closed co1 of the 
third kind. 

17. Absolute and relative birational invariance. Take again a gen
eral w-variety 

(17.1) F(xl9 • • • , ce» y) = 0. 

Let {£0, • • • , £r} be a homogeneous base for the function field K(F). 
Then the system 

ryh ~ &, h = 0, 1, 2, • • • , r > n 

represents a model F\ of F in the projective space 5% with homogene
ous coordinates yh. If {yo, • • • , ??•}, s>n, is a second homogeneous 
base for K(F), the system 

<rZk = Vh k = 0, 1, • • • , s 

represents a second model F% of F in a projective space 5*. Since 
{%h} and {r}k} are homogeneous bases for K(F) Fi and F% are bira-
tionally transformable into one another. The simple example of two 
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elliptic curves of degrees 3 and 4 show however that the corresponding 
structures need not be homeomorphic. The difficulty is caused by the 
presence of singularities. A standard device for curves enables one 
to "forget" singularities and restore homeomorphism. No such device 
is known for a Fn, n>l. 

For simplicity let me limit the argument to surfaces. I have really 
considered a surface as a nonsingular model in some projective space. 
Let Pi, F2 be two such distinct models and suppose that the field 
K(F) is not that of a ruled surface. Then according to Castelnuovo 
and Enriques a birational transformation P: Pi—>P2 may take a finite 
number 8n of exceptional points of F into disjoint nonsingular rational 
curves. There exists an analogous Ô21 for IF""1. Let a point P of Pi be 
sent by P into a curve C of P2. Since C is rational and nonsingular it is 
topologically a sphere. Hence its characteristic x{C)—2. Hence the 
gain in x(^i) through S12 exceptional points is 812. Therefore 

(17.2) x(Pi) + 812 - x(P2) + *u. 

Now a character, numerical or other of F is said to be an absolute 
invariant if it is unchanged under all transformations such as P. 
A relative invariant is one that may change under certain transforma
tions P. 

Let me examine some of the characters that have been introduced. 
It is readily shown that under P both P2 and p are increased by 

the same amount Ô12 —S21. Hence both are relative invariants and 
Po = P2~p is an absolute invariant. 

Since 

x(P) - R* - 2RX + 2 

and both x and R% vary in the same way, x *s a relative invariant 
and Pi is an absolute invariant. 

Therefore: 
(17.3) The dimensions of the spaces of closed co1 of the first and second 

kinds and of œ2 of the second kind are absolute invariants. 

18. Application to abelian varieties. Let II and M be a Riemann 
matrix and its principal matrix (see §3). 

Introduce the following vectors: 

u = (ui, • • , u2p), up+j « üj 

?T/i = (Tift, • • • , 7T2pfM), M = 1) 2 , • • • , 2p\ flVf/,M = 7TyM. 

Through the hyperplanes 
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sM an integer, real 2£-space is partitioned in a familiar way into 
paralellotopes. A suitable fundamental domain D is 

u = 2 *M*M> 0 ^ /M < 1. 

The identification of congruent boundary points turns this domain 
into a 2/>-ring R2p (product of 2p circles) : 

Corresponding to II and M there may be defined a whole family 
of functions 0 of various orders. Each such function cj> is a holomorphic 
function in the domain D. Those of a given order, say n, are character
ized by the property that $n(w+fl-M) =(j>n(u) times a fixed linear ex
ponential function of u. I have shown that one may find an n such 
that if {di(u+a)}, a a fixed ^-vector, j — 0, 1, • • •, r, is a finite linear 
base for the dn(u+a) then the system 

kxj => dn(u + a) 

represents a nonsingular p-variety Vp in projective 5 r , and this F p 

is in analytic homeomorphism with the ring R2p. This is an abelian 
^-variety (see [8]) 

The topological relation Vp<r-*R2p assigns an exceptionally simple 
topology to Vp. Let the edges of D oriented from the origin out be 
designated by 1, 2, • • • , 2p. Any 4 defines a one-cycle represented 
by (4) ; any two edges 4 , 4 define a 2-cycle represented by (4, 4 ) , 
etc. The (4, 4 ) , 4 < 4 form a base for the 2-cycles of Vp, etc. 

I am mainly concerned with the 2-cycles. In view of (pt ju) = — (/x, v) 
a general 2-cycle is represented by a homology 

72 ~ ]C tfV(M, *0> #V = — ™"M-

On the other hand 

2 

wyjfc = dujduk) j , k ^ p; j < k 

is a closed 2-form of the first kind of Vp and {dunduk} is a base for 
all such forms. 

(18.2) REMARKS. On a general n-variety Vn, n^2. Considerations 
of the same type as in §12 may be extended automatically to algebraic 
dependence of hypersurfaces of Fw (its Fn""x)» a n d also to their 
(2n—2)-cycles. Algebraic and homology dependence give rise to a 
number p(F n ) . I single out especially the following proposition from 
[9, p . 104] (Corollary): 
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(18.3) THEOREM. Let <ï> be a fixed surface of Vn (general intersection 
of hyper plane sections of Vn) and let &, • • •, C8 be hyper surfaces which 
cut$ in curves C*, hS$* Then the following relations are all equivalent: 
relations of algebraic dependence between the Ch in Vn, the same between 
the C* in <ï>; relations of homology between the standard oriented cycles 
Ch, Ch in Vn\ the same f or the C* in <£. 

Returning now to the abelian variety Vp let $>, C, C* be this time 
the same as above but for Vp. Now the a>|fc taken on $ become o>2 of the 
first kind for <ï>. If { C8}, s^p(Vp), is a base as to = , or equivalently 
as to ~ and algebraic (2£ — 2)-cycles of Vp, then the same holds for 
the curves C* in $ . Hence by theorem (15.2): 

(18.4) ƒ mdujdui = 0', j,l£p. 

On the other hand since the (/x, v) are cycles in $ we have in <£ 

C8 ~ X) #V(M, *0, ^M" — """ mv»-

Hence (18.4) yields 

(18.5) £ ) i*nw*i**hf = 0; j,k£p. 

This really means that the p matrices [m*„] are linearly independent 
singularity matrices for the Riemann matrix II. If the singularity 
index of II is k, then one must have 

(18.6) p £ ft. 

The possible inequality is due to the fact that an algebraic 2-cycle 
of $ must satisfy a relation such as (18.4) not merely with respect to 
the closed co2 of the first kind of Vp in <3>, but also with respect to all 
co2 of the first kind of $, and one cannot exclude the possible existence 
of such co2 other than the closed taken on $. However, the following 
two properties hold: 

(a) There is a base for the forms M made up of principal forms. 
(b) Each principal M gives rise to a particular system of functions 

0 à la 0. These functions are said to be intermediary. 
(c) If {.M}}, j^ky is a base for the matrices ikf, and <t>$ is an 

intermediary function relative to M$ then <£y = 0 represents a hyper-
surface of Vp and these hypersurfaces are algebraically independent. 

I t follows that p â * and therefore 

(18.7) p = k. 
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This is the result that I was looking for. 
Actually the relations between the hypersurfaces as cycles and 

their Severi independence are the same as for their sections with the 
surface <£. That is, 

(18.8) THEOREM. For hypersurfaces of Vp algebraic dependence and 
homology in Vp are equivalent relations. 

BIBLIOGRAPHY 

1. Emile Picard, Triatê d'analyse. Vol. 2, Gauthier-Villars, Paris. 
2. Emile Picard and George Simart, Théorie des fonctions algébriques de deux 

variables indépendantes. Vols. I, II, Gauthier-Villars, Paris, 1895, 1906. 
3» Francisco Severi, Sulla totalità delle curve algebriche traceiate sopra una superficie 

algebrica, Math. Ann. 62 (1906), 194-226. 
4. — , La base minima pour la totalité des courbes tracées sur une surface 

algébrique, Ann. Sci. École Norm. Sup. 25 (1908), 449-468. 
5. Henri Poincaré, Sur les courbes tracées sur une surface algébrique, Ann. Sci. 

École Norm. Sup. 27 (1910), 55-108. 
6. Gaetano Scorza, Intorno alla teoria generale délie matrici di Riemann e ad alcune 

sus applicaciones, Rend. Cire. Mat. Palermo 41 (1916), 263-380. 
7. Solomon Lefschetz, Algebraic surfaces, their cycles and integrals, Ann. of Math. 

21 (1920), 225-258. 
8. , On certain numerical invariants of algebraic varieties with application to 

abelian varieties, Trans. Amer. Math. Soc. 22 (1921), 327-482. 
9. , Vanalysis situs et la géométrie algébrique, Borel Series, 1924. 
10. 9 Topology, Amer. Math. Soc. Colloq. Publ., Vol. 12, Amer. Math. Soc, 

Providence, R. I., 1930; reprint Chelsea, New York, 2nd éd., 1950. 
11. Oscar Zariski, Algebraic surfaces, Ergebnisse der Math., Springer-Verlag, 

Berlin, 1935; reprint Chelsea, New York, 1948. 
12. Heisuki Hironaka, Resolution of singularities of an algebraic variety aver a 

field of characteristic zero, Ann. of Math. (2) 79 (1964), 109-329. 
13. W. V. D. Hodge, Theory and application of harmonic integrals, Cambridge 

Univ. Press, New York, 1941. 


