ON SIMPLE GROUPS OF ORDER $5 \cdot 3^{a} \cdot 2^{b}$

BY RICHARD BRAUER ${ }^{1}$
Communicated by W. Feit, April 29, 1968

The following theorem can be proved.
Theorem. If G is a simple group of an order g of the form $g=5 \cdot 3^{a} \cdot 2^{b}$, $g \neq 5$, then G is isomorphic to one of the alternating groups A_{5}, A_{6}, or to the group $O_{5}(3)$ of order 25,920.

One may conjecture that there exist only finitely many nonisomorphic noncyclic groups whose order g is divisible by exactly three distinct primes $p<q<r$. J. G. Thompson [6] has shown that then $p=2, q=3$ while r is $5,7,13$, or 17 . It is not unlikely that if one of the exponents a, b, c is 1 , the methods applied here can be used to find all simple groups of the orders in question. No example is known in which all three exponents a, b, c are larger than 1 .

Since the proof of the theorem is long, we do not intend to publish it. A complete account has been prepared in mimeographed form. ${ }^{2}$ We shall give a brief outline.

1. We start with two propositions of slightly more general interest.

Proposition 1. Let G be a simple group of an order $g=p^{a} q^{b} r^{c}$ where p, q, r are distinct primes. Assume that the Sylow-subgroup R of G of order r^{c} is cyclic. Then R is self-centralizing in $G ; C(R)=R$.

Proof. If this was false, we may assume that $C(R)$ contains an element π of order p, (interchanging p and q, if necessary). Then, for $R=\langle\rho\rangle$,

$$
\sum \chi_{j}(\pi \rho) \chi_{j}(1)=0
$$

where χ_{j} ranges over the irreducible characters of G in the principal p-block $B_{0}(p)$. It follows that there exists a nonprincipal character $\chi_{i} \in B_{0}(p)$ such that

$$
\begin{equation*}
\chi_{j}(1) \not \equiv 0(\bmod q), \quad \chi_{j}(\pi \rho) \neq 0 \tag{1}
\end{equation*}
$$

If here χ_{j} belongs to the r-block $B(r)$, the second condition (1) implies that ρ belongs to a defect group D of $B(r)$, cf. [2]. Thus, $D=R$. It

[^0]follows that $\chi_{j}(1) \not \equiv 0(\bmod r)$, cf. [3] or [5]. Hence $\chi_{j}(1)$ is a power of p. This is impossible for $\chi_{j} \in B_{0}(p)$, cf. [4], and the proposition is proved.

Let θ be a class function defined on a finite group. Then θ is a linear combination

$$
\begin{equation*}
\theta=\sum_{i} c_{i} \chi_{i} \tag{2}
\end{equation*}
$$

of the irreducible characters χ_{i} of G with complex coefficients. If B is a p-block of G for some prime p, we shall denote by θ_{B} the expression obtained if we let χ_{i} range in (2) only over the characters $\chi_{i} \in B$. Hence

$$
\begin{equation*}
\theta=\sum \theta_{B} \tag{3}
\end{equation*}
$$

where B ranges over all p-blocks of G.
Proposition 2. Let G be a finite group of an order $g=p^{n} g_{1} g_{2}$, (p a prime, g_{1} and g_{2} positive integers). Let θ and η be class functions on G with $\theta(1) \neq 0, \eta(1) \neq 0$, such that θ vanishes for all elements of G of an order divisible by some prime factor of g_{1} and that η vanishes for all elements of G of an order divisible by some prime factor of g_{2}. Then there exists a p-block B for which $\theta_{B} \eta_{B} \neq 0$.

Proof. Let ρ range over the p-regular elements of G. It follows from the assumptions that $\theta(\rho) \eta(\rho)=0$ for $\rho \neq 1$. Hence

$$
\begin{equation*}
\sum_{\rho} \theta(\rho) \eta(\rho)=\theta(1) \eta(1) \neq 0 . \tag{4}
\end{equation*}
$$

Let B and $B^{\prime} \neq B$ be two p-blocks of G. If we express θ and η by the p-modular characters of G, the orthogonality relations show that

$$
\begin{equation*}
\sum_{\rho} \theta_{B}(\rho) \theta_{B^{\prime}}(\rho)=0 \tag{5}
\end{equation*}
$$

Our result is obtained by combining (3), the analogous relation for η, (4), and (5).
2. Assume now that G satisfies the hypotheses of the theorem. It follows from Proposition 1 that if $R=\langle\rho\rangle$ is a subgroup of order 5 of G, then R is self-centralizing. This implies that the principal 5 -block $B_{0}(5)$ is the only 5 -block of G of positive defect. Set

$$
\psi=\sum \chi_{i}(\rho) \chi_{i}
$$

with χ_{i} ranging over $B_{0}(5)$. Then ψ vanishes for all 5-regular elements of G. On account of Proposition 1, ψ then vanishes for all 2 -singular elements of G. This implies that if $B(2)$ is a 2 -block of $G, \psi_{B(2)}$ vanishes
for all 2-singular elements. Likewise, if $B(3)$ is a 3-block, $\psi_{B(8)}$ vanishes for all 3 -singular elements.

A great deal of information is available concerning the characters $\chi_{i} \in B_{0}(5)$, cf. [1] or [5]. It follows at once that $B_{0}(5)$ contains an irreducible character χ_{n} of degree $3^{\alpha}>1$ and an irreducible character χ_{h} of degree $2^{\beta}>1$. Here χ_{n} belongs to a 3 -block $B^{*}(3)$ different from the principal 3-block and χ_{h} belongs to a 2-block $B^{*}(2)$ different from the principal 2-block [4].

The normalizer $N(R)$ of R in G has either order 10 or 20 . In the former case, we have $3^{\alpha}-2^{\beta}= \pm 1$. Then $\alpha \leqq 2$. For $B(3)=B^{*}(3)$, $\psi_{B^{*}(3)}= \pm \chi_{n}$. Hence χ_{n} vanishes for all 3 -singular elements. This implies $\alpha=a$. Likewise, $\beta=b$. It follows that $g=60$ or 360 . Then $G \simeq A_{5}$ or $G \simeq A_{6}$ respectively.

The discussion of the case $|N(R)|=20$ is more difficult. Here, $B_{0}(5)$ consists of five irreducible characters χ_{i}, and $\chi_{i}(\rho)= \pm 1$, $\chi_{i}(1) \equiv \chi_{i}(\rho)(\bmod 5)$. There are several ways in which Proposition 2 can be applied. For instance, let $B(2)$ be a 2 -block which meets $B_{0}(5)$ and let $B(3)$ be a 3 -block such that

$$
\begin{equation*}
B_{0}(5) \cap B(2) \cap B(3)=\varnothing \tag{6}
\end{equation*}
$$

We claim that $B(3) \subseteq B_{0}(5)$. Indeed, if χ_{i} was an irreducible character in $B(3)$ and not in $B_{0}(5)$, then $\theta=\chi_{i}$ vanishes for all 5 -singular elements of G while $\eta=\psi_{B(2)}$ vanishes for all 2 -singular elements. Now Proposition 2 with $p=3$ yields a contradiction with (6). Similarly, we see that under the same assumptions, all irreducible characters in $B(3)$ have the same degree.

If we take $B(2)=B^{*}(2), B(3)=B^{*}(3)$ and if (6) holds, then $B^{*}(3)$ consists entirely of characters of degree 3^{α}. There are then necessarily $3^{a-\alpha}$ members of $B^{*}(3)$. If the degree 3^{α} occurs only once, $\alpha=a$. Analogous results hold for $B^{*}(2)$.

Finally, it is easy to obtain inequalities for the degrees of the irreducible characters in $B_{0}(5)$. For instance, it can be shown that there exists an irreducible character $\chi_{\lambda} \in B_{0}(5)$ such that the five degrees in suitable order are at most equal to

$$
\chi_{\lambda}(1)^{0}=1, \quad \chi_{\lambda}(1), \quad \chi_{\lambda}(1)^{2}, \quad \chi_{\lambda}(1)^{3}, \quad \chi_{\lambda}(1)^{4}
$$

respectively. Combining our results with arguments from elementary number theory, we can show that the five degrees in $B_{0}(5)$ are

$$
1,6,24,64,81
$$

It follows that $\alpha=a=4, \beta=b=6$ and that

$$
g=5 \cdot 81 \cdot 64=25,920
$$

3. It still remains to identify the group G. If σ, τ, ξ are elements of G, if χ_{i} ranges over all irreducible characters of G, it is well known that

$$
\begin{equation*}
a(\sigma, \tau, \xi)=g|C(\sigma)|^{-1} \cdot|C(\tau)|^{-1} \sum \chi_{i}(\sigma) \chi_{i}(\tau) \chi_{i}(\xi) / \chi_{i}(1) \tag{7}
\end{equation*}
$$

is a nonnegative rational integer. Indeed, $a(\sigma, \tau, \xi)$ is equal to the number of representations of ξ as a product st of a conjugate s of σ and a conjugate t of τ. If we choose ξ as an element ρ of order 5 , then $\chi_{i}(\rho)$ $=0$ for $\chi_{i} \notin B_{0}(5)$ while $\chi_{i}(\rho)$ is known for $\chi_{i} \in B_{0}(5)$. Using this and other known properties, we can discuss the values of the characters $\chi_{i} \in B_{0}(5)$ for other elements of G. In particular, we can show that there exist elements μ of order 4 and ν of order 3 with

$$
|C(\mu)|=8, \quad|C(\nu)|=9
$$

It is then easy to see that for some irreducible character $\chi_{k} \neq 1$ of G both $\chi_{k}(\mu)$ and $\chi_{k}(\nu)$ are units. This implies that χ_{k} has degree 5. A final discussion shows that χ_{k} takes rational values for 3-regular elements of G.

The irreducible representation X with the character χ_{k} gives rise to a 3-modular representation Y of G of degree 5 ; the character ϕ of Y is the restriction of χ_{k} to the set of 3-regular elements of G. Since ϕ takes only rational values, Y can be written in the Galois field with 3 elements and Y possesses a nontrivial bilinear invariant. It is then easy to see that Y has a nontrivial quadratic invariant and it follows that $G \simeq O_{5}(3)$.

References

1. R. Brauer, On groups whose order contains a prime number to the first power, I, Amer. J. Math 64 (1942), 401-420.
2. -, Zur Darstellungstheorie der endlichen Gruppen. I, II, Math. Z. 63 (1956), 406-444; 72 (1959), 5-46.
3. R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 361-365.
4. R. Brauer and H. F. Tuan, On simple groups of finite order, Bull. Amer. Math. Soc. 51 (1945), 756-766.
5. E. C. Dade, Blocks with cyclic defect group, Ann. of Math. 84 (1966), 20-48.
6. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Cf. also J. G. Thompson, Some simple groups, Symposium on Group Theory; Harvard University, April 1963.

[^0]: ${ }^{1}$ This research has been supported by an N.S.F. Grant.
 ${ }^{2}$ This report can be obtained on request from the Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138.

