
A NOTE ON THE STRONG LAW OF LARGE NUMBERS 

BY K. G. BINMORE AND MELVIN KATZ1 

Communicated by David Blackwell, April 3, 1968 

1. Introduction. Let { Xk} denote a sequence of independent, 
identically distributed (i.i.d.) random variables. Let 

Sn-t^Xk (fl » 1, 2, • • • )• 
J f e - 1 

A long standing problem in probability theory has been to find neces
sary and sufficient conditions on the distribution function of Xk in 
order that n~lSn converge almost surely to plus infinity. The purpose 
of this paper is to exhibit such conditions. 

2. THEOREM. Let {Xk} denote a sequence of i.i.d. random variables 
with common characteristic function <j>. Then n~1Sn—*+ oo a.s. if and 
only if 

/

i eiub _ i / e~
iua<l>(u)) - 1 

— " — l o s I 1 - « , V f du 

-i tu I 1 + u2 ) 
is finite for each a>0. 

The proof of the theorem is based on the following lemma. 
LEMMA. Let {Xk} denote a sequence of i.i.d. random variables. Then 
(a) rrlSn—>+oo a.s. 

if and only if, for each a>0, 
oo 

(b) X n-lP(Sn < an) < oo. 
n - l 

PROOF OF THE LEMMA. We first show that (a) implies (b). Suppose 
there exists an a>0 such that X)w~"1i?(5n<aw) = oo. Let 

Tn - f ) (a - Xk). 
&-i 

Then X)w~ 1 P(r n >0) = oo, and, by a theorem of Spitzer [2] it fol
lows that lim sup Tn = oo a.s. However, lim n~lSn = °° a.s. certainly 
implies that lim sup Tn = — oo a.s. Thus (b) holds. 

Conversely, suppose that (b) holds. Then, for each <z>0, 

Yi n-lP(Sn - na< 0) < co 
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and consequently, from the same work of Spitzer, we have that 

max (ka — Sk)* < °° a.s. 

for all a>0. This clearly implies that lim w~15n= <*> a.s., and there
fore (a) holds. 

Before proceeding to the proof of the theorem, we note that previ
ous work (e.g. Derman and Robbins [l]) giving sufficient conditions 
that lim énr1Sn = °o a.s. follows quickly from the above lemma. 

PROOF OF THE THEOREM. Let { Yk} denote a sequence of i.i.d. 
random variables, each with characteristic function (1+w2)""1, and, 
further, let { Yk} be independent of {Xk}. Write Zk-Xk+Yk and 

Wn-itZk (» « 1, 2, • • • )• 

Since Yk has expectation zero, n~-lSn—»<*> a.s, if and only if rrlWn 

—»oo a.s. 
By means of a well-known inversion formula, we have that 

I r. oo /eiub - 1 \ / <t>(U) y 
P{an - b ^ Wn < an) = — I e'iuan ( ) I J du. 

27TJ-00 \ ÎU A l + W 

(Note that {<t>(u)/(l+u2) } n is integrable and that Wn has an abso
lutely continuous distribution function.) 

Therefore, 
00 

YJ rrlP{an - b <> Wn < an) 

1 r °° eiub - 1 ( e~iua<l)(u)) - 1 

= — I log <1 > du, 
27TJ-00 iu \ 1 + u2 ƒ 

the interchange of sum and integral being justified, since 

I 2 - / — e""*Man( ) ( ) <** 
J-oon- l l W \ *W / M + U2/ I 

J ~oo I n~l » I 1 + U2 I j 

< co. 
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From the Monotone Convergence Theorem, it follows that 

00 00 

X n~lP(Wn < an) = lim ] £ n~lP(an - b â Wn < an) 

log ( 1 ) rfw. 
-K iu \ 1 + #V 

By the Riemann-Lebesgue lemma, 

/

6ftt6 - 1 / e-iua4>(u)\-1 

log ( 1 ) du 
,u\>\ iu \ 1 + u2 / 

exists and is finite. I t follows that (1) is finite for each a>0 if and 
only if ^2n~1P(Wn<an) is finite for each a > 0 . The latter condition 
is equivalent to rrlWn-*<*> a.s. which is, in turn, equivalent to 
»~"15»--> oo a.s. This completes the proof. 
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