A NOTE ON THE STRONG LAW OF LARGE NUMBERS

by K. G. BINMORE AND MELVIN KATZ ${ }^{1}$

Communicated by David Blackwell, April 3, 1968

1. Introduction. Let $\left\{X_{k}\right\}$ denote a sequence of independent, identically distributed (i.i.d.) random variables. Let

$$
S_{n}=\sum_{k=1}^{n} X_{k} \quad(n=1,2, \cdots)
$$

A long standing problem in probability theory has been to find necessary and sufficient conditions on the distribution function of X_{k} in order that $n^{-1} S_{n}$ converge almost surely to plus infinity. The purpose of this paper is to exhibit such conditions.
2. Theorem. Let $\left\{X_{k}\right\}$ denote a sequence of i.i.d. random variables with common characteristic function ϕ. Then $n^{-1} S_{n} \rightarrow+\infty$ a.s. if and only if

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \int_{-1}^{1} \frac{e^{i u b}-1}{i u} \log \left\{1-\frac{e^{-i u a} \phi(u)}{1+u^{2}}\right\}^{-1} d u \tag{1}
\end{equation*}
$$

is finite for each $a>0$.
The proof of the theorem is based on the following lemma.
Lemma. Let $\left\{X_{k}\right\}$ denote a sequence of i.i.d. random variables. Then
(a) $n^{-1} S_{n} \rightarrow+\infty$ a.s.
if and anly if, for each $a>0$,
(b) $\sum_{n=1}^{\infty} n^{-1} P\left(S_{n}<a n\right)<\infty$.

Proof of the Lemma. We first show that (a) implies (b). Suppose there exists an $a>0$ such that $\sum n^{-1} P\left(S_{n}<a n\right)=\infty$. Let

$$
T_{n}=\sum_{k=1}^{n}\left(a-X_{k}\right)
$$

Then $\sum n^{-1} P\left(T_{n}>0\right)=\infty$, and, by a theorem of Spitzer [2] it follows that $\lim \sup T_{n}=\infty$ a.s. However, $\lim n^{-1} S_{n}=\infty$ a.s. certainly implies that $\lim \sup T_{n}=-\infty$ a.s. Thus (b) holds.

Conversely, suppose that (b) holds. Then, for each $a>0$,

$$
\sum n^{-1} P\left(S_{n}-n a<0\right)<\infty
$$

[^0]and consequently, from the same work of Spitzer, we have that
$$
\max _{k \geq 1}\left(k a-S_{k}\right)^{+}<\infty \text { a.s. }
$$
for all $a>0$. This clearly implies that $\lim n^{-1} S_{n}=\infty$ a.s., and therefore (a) holds.

Before proceeding to the proof of the theorem, we note that previous work (e.g. Derman and Robbins [1]) giving sufficient conditions that $\lim n^{-1} S_{n}=\infty$ a.s. follows quickly from the above lemma.
Proof of the Theorem. Let $\left\{Y_{k}\right\}$ denote a sequence of i.i.d. random variables, each with characteristic function $\left(1+u^{2}\right)^{-1}$, and, further, let $\left\{Y_{k}\right\}$ be independent of $\left\{X_{k}\right\}$. Write $Z_{k}=X_{k}+Y_{k}$ and

$$
W_{n}=\sum_{k=1}^{n} Z_{k} \quad(n=1,2, \cdots)
$$

Since Y_{k} has expectation zero, $n^{-1} S_{n} \rightarrow \infty$ a.s. if and only if $n^{-1} W_{n}$ $\rightarrow \infty$ a.s.
By means of a well-known inversion formula, we have that

$$
P\left(a n-b \leqq W_{n}<a n\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i u a n}\left(\frac{e^{i u b}-1}{i u}\right)\left(\frac{\phi(u)}{1+u^{2}}\right)^{n} d u .
$$

(Note that $\left\{\phi(u) /\left(1+u^{2}\right)\right\}^{n}$ is integrable and that W_{n} has an absolutely continuous distribution function.)

Therefore,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}{ }^{-1} P\left(a n-b \leqq W_{n}<a n\right) \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i u b}-1}{i u} \log \left\{1-\frac{e^{-i u a} \phi(u)}{1+u^{2}}\right\}^{-1} d u,
\end{aligned}
$$

the interchange of sum and integral being justified, since

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \sum_{n=1}^{\infty}\left|\frac{1}{n} e^{-i u a n}\left(\frac{e^{i u b}-1}{i u}\right)\left(\frac{\phi(u)}{1+u^{2}}\right)^{n}\right| d u \\
& \quad \leqq b \int_{-\infty}^{\infty}\left\{\sum_{n=1}^{\infty} \frac{1}{n}\left|\frac{\phi(u)}{1+u^{2}}\right|^{n}\right\} d u \\
& \quad \leqq b \int_{-\infty}^{\infty}\left\{\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{1}{1+u^{2}}\right)^{n}\right\} d u \\
& \quad=b \int_{-\infty}^{\infty} \log \left(1+\frac{1}{u^{2}}\right) d u \\
& \quad<\infty .
\end{aligned}
$$

From the Monotone Convergence Theorem, it follows that

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{-1} P\left(W_{n}<a n\right) & =\lim _{b \rightarrow \infty} \sum_{n=1}^{\infty} n^{-1} P\left(a n-b \leqq W_{n}<a n\right) \\
= & \lim _{b \rightarrow \infty} \int_{-\infty}^{\infty} \frac{e^{i u b}-1}{i u} \log \left(1-\frac{e^{-i u a} \phi(u)}{1+u^{2}}\right)^{-1} d u .
\end{aligned}
$$

By the Riemann-Lebesgue lemma,

$$
\lim _{b \rightarrow \infty} \int_{|u|>1} \frac{e^{i u b}-1}{i u} \log \left(1-\frac{e^{-i u a} \phi(u)}{1+u^{2}}\right)^{-1} d u
$$

exists and is finite. It follows that (1) is finite for each $a>0$ if and only if $\sum n^{-1} P\left(W_{n}<a n\right)$ is finite for each $a>0$. The latter condition is equivalent to $n^{-1} W_{n} \rightarrow \infty$ a.s. which is, in turn, equivalent to $n^{-1} S_{n} \rightarrow \infty$ a.s. This completes the proof.

References

1. C. Derman and H. Robbins, The strong law of large numbers when the first moment does not exist, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 586-587.
2. F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), 323-339.

Royal Holloway College, London University and

State University of New York at Albany

[^0]: ${ }^{1}$ Partially supported by National Science Foundation (grant GP-5217).

