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Let Fx denote the free abelian group freely generated by the set X, 
and let R be a subset of Fx. With [R] denoting the subgroup of Fx 
generated by R, set 

G(X, R) = FX/[R], 

i.e., G(X, R) is that abelian group generated by X and subject only 
to the relations 

r = 0 all r £ R. 

If each of the elements in R involves only one generator in X, 
then G(X, R) is a direct sum of cyclic groups. On the other hand, if 
G is any abelian group, then GÇ=G(X, i?), where each element in R 
involves at most three generators in X; indeed this isomorphism re
sults if we take X = G and R equal to the set of all elements in F o of 
the form x+y~ z, where z = x+y in G. 

Our purpose here is to investigate the structure of the group 
G(X, R) in the intermediate case when each of the elements of R 
involves at most two generators, and G(X, R) is a torsion group. We 
can evidently restrict our attention to ^-groups, and in this case it 
is easily seen that G(X, R)=G(X', i?')> where each element in R' is 
of one of the forms 

pnx or pnx — y. 

This leads us to the following definition. Let X be a set, F be a sub
set of the set of ordered pairs (x, y) with x, yGX, wbea map of X to 
the nonnegative integers, and v be a map of V to the nonnegative 
integers. By G(X, V, u, v) we mean that abelian group generated by 
X and subject only to the relations 

pU(x)x s o all x G X, 
pvix,v)x ö y au fa y} g y. 

We say that an abelian p-group G is a T-group if G=G{X, V, u, v) 
for some (X, V, u, v). 

1 This work was supported in part by NSF Grants GP 7252 and GP 5497. 
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One property of !T-groups is clear: the direct sum of a family of T-
groups is again a T-group. Every divisible p-group is certainly a T-
group, and the reduced part of a T-group is again a T-group. 

Before stating our main results concerning these groups, let us 
recall a few basic definitions. Let G be any reduced abelian £-group. 
Define the subgroups paG for each ordinal a as usual by the rules: 
p°G = G; paG = {px\xEp"-lG} if a-\ exists; paG = [\^<ap

&G if a is a 
limit ordinal. Since G is reduced, there is a first ordinal X, called the 
length of G, such that p^G = 0. For each ordinal a we set 

fG(a) = rank paG Pi G[p]/pa+1G C\ G[p], 

where G[p]= {xCzG\px = 0}, and we call the cardinal numberfa(a) 
the aih Ulm invariant of G. Finally we let o) denote the first infinite 
ordinal and 0 denote the first uncountable ordinal. 

The description of jT-groups is now accomplished by the following 
theorems. 

(A) If G and H are reduced T-groups, then G and H are isomorphic 
if and only if ƒ G (a) =ƒ#(«) for each ordinal a. 

(B) Let f be a map of an ordinal X to a set of cardinal numbers. 
Then there exists a reduced T-group G of length X such thatfoia) =ƒ(«) 

for each a<\ if and only iff satisfies the following conditions: 
(i) X = sup {a + l | / ( a ) ^ 0 } ; 
(ii) if a is a limit ordinal such that a+co <X, and 0 ̂ 17 <co, then 

(C) A reduced p-group G is a direct sum of countable groups if and 
only if G is a T-group of length at most 0. 

When specialized to countable ^-groups, (A) and (C), of course, 
reduce to Ulm's Theorem, and in the case of direct sums of countable 
groups they reduce to the theorem of Kolettis [2]. Our results are not 
independent of Ulm's Theorem, however, since it is used to establish 
(C). The proofs of (A), (B) and (C) will appear elsewhere. 

Actually T-groups have been studied before in a different guise. In 
[3], Nunke defines a reduced £-group G to be totally projective if 

paExt(G/paG, A) = 0 

for all ordinals a and every group 4 , and he obtains a number of prop
erties of these groups. Quite recently Hill [l ] has announced that two 
totally projective groups with the same Ulm invariants are isomor
phic. Now it is easily verified that if G is a reduced T-group and a is 
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an ordinal, then both paG and G/paG are T-groups. Moreover, (A) and 
(B) yield that a T-group whose length is a limit ordinal is a direct sum 
of T-groups of smaller length. These last two facts, in conjunction with 
[3, 2.6], imply that every reduced T-group is totally projective. On 
the other hand, if i f is a totally projective group, then the function 
f H necessarily satisfies condition (ii) of (B). Consequently there is a 
reduced T-group G having the same Ulm invariants as H, and Hill's 
theorem guarantees that G and H are isomorphic. Thus a reduced 
abelian p-group is totally projective if and only if it is a T-group. 

The foregoing results further provide a characterization of the class 
of all reduced T-groups in terms of certain natural group-theoretic 
properties. Let X be a class of reduced abelian p-groups. Then 3C coin-
cides with the class of all reduced T-groups if and only if SZ has the 
following properties: (1) Xis closed under isomorphism; (2) 3C is closed 
under direct sums; (3) if GÇE3Z and the length of G is a limit ordinal, 
then G is a direct sum of groups in 5C of smaller length; (4) for each 
p-group G and each ordinal a, G £ 3C if and only if both G/paG, paGÇz3Z; 
(5) if an abelian p-group G has no elements of infinite height, i.e., 
p*>G = 0, then G£3C if and only if G is a direct sum of cyclic groups. 
Thus the class of all reduced T-groups is the smallest class of reduced 
^-groups that has properties (l)-(4) and contains the finite groups. 
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