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Consider the following diagram of pointed spaces and maps 

Y 

where pg « ƒ and p is a fibration with fiber F. Suppose that X is a 
CW-complex of dimension ^2conn(/ r) and conn (F) è l (conn 
= connectivity). Let [X, Y]B be the set of homotopy classes of 
pointed maps over f(H : X XI~*Y is a homotopy over ƒ if pHt—f for 
each / £ / ) . Becker proved in [2], [3] that under these hypotheses 
[X, Y]B can be given an abelian group structure with [g] as zero 
element. 

The purpose of this note is to describe a spectral sequence of the 
Adams type which converges to [Xf Y]B. The differentials of the 
spectral sequence are the twisted operations described in [ö], [7]. 
The sequence has the same relation to the method of computing 
[X, Y]B used in [ô], [7] as the Adams spectral sequence has to the 
killing-homotopy method of computing ordinary homotopy groups. 
This note should be read as a sequel to [7]. 

A different spectral sequence for [X, Y]B is given by Becker in [3]. 
A sequence apparently similar to the one to be described here is men
tioned in [4] and credited to Becker and Milgram. 

1. The spectral sequence. 
diagram : 

Consider the following commutative 

1 This research was partially supported by NSF Grant GP-6520. 
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where F2 is the square of F, i.e. the pullback of p by p, and s is the 
canonical cross section. Write (F2 , F) for (F2 , s(Y)). Let A =AP be 
the mod p Steenrod algebra and use Zp coefficients for all cohomol-
ogy. Let i: FQY2 and assume that i*: H*(Y2)->H*(F) is onto. As
sume also that Hj(F; Z) is finitely generated for each j . Let A(Y) 
= H*(Y)OA be the Massey-Peterson algebra [S], Then H*(Y2, Y) 
and H*(X, *) are A(Y) modules via p: Y*->Y and g: X-*Y. 

THEOREM. Under the above hypotheses, there is a spectral sequence 
such that 

(1) E5 ' -Ex t /&( f l* (F» , F), H*(X, *)) 
(2) E% = B'>'/B'+1>'+1, where [X, F ] B = 5 0 » O ^ 1 ' 1 D ^ 2 ' O • • • 

and f)B*'* = all elements of [X, Y]B of finite order prime to p. 

Notes, (1) H*(Y2, F) can be easily computed as an A(F) module in 
terms of H*(Y) by the results of [S]. 

(2) Low level computations with the spectral sequence are not 
difficult. However, the results can be obtained also, and sometimes 
more easily, by the methods of [ó], [7]. The spectral sequence should 
ultimately prove valuable for proving general theorema about 
[X, Y]B (e.g., about immersion groups). 

(3) If B = * (a point) then the spectral sequence reduces, after a 
little manipulation of £2, to the Adams spectral sequence for [X, F ] . 

2. Sketch of the proof. Let 5 F be the category of all triples 
(Z, i, &) where YjL>Z±> F and £ £ - 1 , i.e., of all contractions of F 
with given retraction. A morphism in the category is a map m: Z—+W 
such that mZ — w and ûm~è. Recall from [ó], [7] that one can de
fine a notion of homotopy in 3 F (in the obvious way) and also cone, 
suspension, path, and loop functors enjoying the same properties as 
the usual functors on 3* ( = the ordinary category of pointed spaces 
and maps). The cone-suspension sequence (Puppe sequence) and the 
path-loop sequence are exact after application of ( —, Z) and (Z, — ) 
respectively. ( —, — ) denotes the set of homotopy classes of maps in 
the category. In brief, all the notions concerning 3* generalize to 3 F. 

We will now apply an upside down version of Adams' method [1 ] 
t o g : F2->F.Since [X, Y]B=[X, Y^r^iXVY, F2), we can work in 
3F. Suspension of F2 in 3 F has the effect of suspending F in 3*. Suc
cessively larger pieces of the spectral sequence are obtained by taking 
successively higher suspensions of F2. We will be content here with 
one piece. Assume conn(77) =w. Consider the following commutative 
diagram in 3*. 
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m+1 

Each Ai is a product of K(ZP, j)'s. a\ = (q, u), where u = («i, «2, • • • ) 
and the i*w/s form a set of -4 generators for H'(F), jé2n+i. 
vm = (vm,ij vm,z, • • • ) and the »m,/s form a set of ^4(F) generators for 
(ker (£ytj = 2n + l. 

The tower can be formally written as a new tower in 3 F simply by 
replacing Am, m>0, by FX^4m and vm by (gw, z>m) where qm: Ym~-»Y 
is from the original tower. Each fibration Fm—> Fm_i is a fibration in 
3 F induced from a principal fibration in 3 F. 

Now apply the functor (XV F, —}. The resulting exact couple 
gives the promised piece of the sequence. 
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