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1. Introduction. In this note we shall give some sufficient condi
tions for the existence of solutions of a certain type of boundary value 
problem (BVP) for delay-differential equations (d.d.e.'s). The con
ditions given are of two kinds, in Theorem 1 a relationship between 
the boundary conditions and the size of the interval under considera
tion implies the existence of solutions; in Theorem 4 the existence 
of solutions of delay-differential inequalities implies the existence of 
solutions. A discussion concerning the formulation of BVP's of the 
type considered here may be found in [ l ] , [2], and [3]; these sources 
in turn reveal much of the literature concerning such problems. 

2. The problem. Let ƒ be a real-valued continuous function defined 
on Rn+m+2Xl, where 2" is the compact interval [a, &]. Let h(t)} • • • , 
K(t), gi(t), • • • , gm(t) be nonnegative continuous functions with 
domain 7. Assume that t—gi{t) assumes the value a at most a finite 
number of times as t ranges over I and i = 1, • • • , m. Define the real 
number c by 

c = min < min inf (t — k{(t)), min inf (/ — gj(t))> 
\ l£i&n tel lgj&m «€/ ) 

and let J= [c, a]. Let <t>(t)ÇiCl{J) and let B be any real number; we 
then seek a function x(t) EC(/U ]I)r\C l(J)r\C l(I) having a piecewise 
continuous second derivative such that 

(1) x(t) = 4>(t), %f(t) = 4>'(t)9 t G / , x{l) = 5 , lûb. 

and 

(2) x"(t) « ƒ(*(/), *(* - Ax(0), • • - , * ( * - **(*)), 

* '(0, *(t - gi(0), • • • , * ' ( ' - fr.(0, 0 

for a ^ t ^ 5. 

In general we must expect that a solution of problem (1) — (2) will 
have a discontinuous derivative at t = a, and therefore the second 
derivative will in general only be piecewise continuous if the right 
side of (2) depends on delays in x'. 
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3. Existence results. Consider now the BVP (l)-(2) . 

THEOREM 1. Let M>0, N>0 be given and let 

Q = SUp { | f(xly • • • , ffn+m+2> t)\ l\ X{\ g 2M, % = 1, • • • , W + 1 ; 

77^» if 5, a<h^b, is chosen so that 

b - a £ min {(8M/Q)1 '2, 2 # / ö } , 

3 F P ( l ) - ( 2 ) fcas a solution for any <j>E:Cl(J) with \<f>(t)\^M, 
\<t>'(t)\ SN and any real number J5, \B\ g M and 

| (0(a) - 2*)/(S -a)\*N. 

The proof of Theorem 1 may be obtained by means of the Schauder-
Tychonoff Fixed Point Theorem in the following way. We define a 
mapping T from the Banach space 

(^ | | - | | ) = ( C k 5 ] r i C ^ , a ] n ^ [ a , 5 ] , | | . | | ) , 

where 

||#|| = sup | x(t) I + max { sup | x'(t) | , sup | xr(t) | }, 

into B by 

Tx(t) = ƒ G(t; s)f(x(s), • • • , x'(s)} • • • , s)ds + l(t) 

where 
G(t;s) = G(t;s), a £ t â 5, 

a g $ g b. 
= 0, c ^ / ^ a, 

G(/; 5) is the Green's function with respect to the BVP 

*" = 0, x{a) = 0 = x(h) 

and l(t) is the function 

/(Ö = 0(0, c ^ ^ a , 

5 - 0(a) 

b — a 
(t - a) + 0(a), a û t ^ l . 

One may then show that T has a fixed point. Fixed points of Tt how
ever, are solutions of BVP (1) — (2). 

The following corollary is important in the proof of the results to 
follow. 
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COROLLARY 2. Assume there exists a constant Q such that \f\ ÛQ on 
Rn+m+2xi. Then any BVP (l)-(2) has a solution. 

DEFINITION. A function a.{t)GC{JKJI)r\Cl{J)r\Cx{I) having a 
piecewise continuous second derivative is called a lower solution with 
respect to BVP (l)-(2) provided 

W «(*) ^ <K0, t G / , «(ft) Û B, 

(ii) *"{t) è /(«(O, <*(' - *i(0), • • •, <*'«, «'(' - *x(*)),.. •, o 
for a ^ * ^ ft. 

An upper solution /3 of (l)-(2) is defined by reversing the inequalities 
in (i) and (ii). 

Consider now the d.d.e. 

(3) *"(*) =ƒ(*(*), x(t - *i(0), • • • , * ( * - hn(fi), *'(0, t). 

LEMMA 3. Let there exist a constant Q such that \f\ ^ Q. Let a and j8 be 
lower and upper solutions of BVP (l)-(3) with a(t)^^{t) for t(E.I. 
Furthermore, assume that ƒ is nonincreasing in the second through 
(n+l)st argument. Then there exists a solution x(t) of BVP (l)-(3) 
such that a(t) £x(t) ^/3(*) for t&I. 

Making use of Lemma 3 we may now obtain results for d.d.e.'s of 
the form (3) and 

(4) *"(/) = f(x(t),x(t - Ax(0), • • - , * ( * - hn(t)), t). 

THEOREM 4. Let ƒ be nonincreasing in the second through (n + l)st 
argument. Then BVP (l)-(4) has a solution if and only if there exist 
lower and upper solutions a and /3 of (1)~(4) with a(t) è/3(t) on I. 

This theorem is very useful in many instances where lower and 
upper solutions may easily be found. Consider e.g. the following 
BVP: 

(5) x(t) = 0(0, c£t£ a, x(b) = B, 

(6) x"(t) = x(t) - x(t - h(t)), au * ^ ft. 

Then it is clear that 

# = max { sup 0(0, B} and a = min { inf 0(0, B) 

are upper and lower solutions of (5)-(6). Hence there exists a solution 
x(t) of (5)-(6) such that a^x(t)^(3. 

Results similar to Theorem 4 for BVP (l)-(3) may be obtained 
provided some condition is imposed on ƒ which guarantees a bound 
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on the derivative of a solution in terms of a bound on the solution. 
For example if ƒ satisfies a growth condition 

l/l scx + cM» 
where C\ and C2 are nonnegative functions of the remaining argu
ments, then the existence of lower and upper solutions a and /3, 
a(t) éj8(/), implies the existence of a solution of BVP (l)-(3) . 

Proofs of the above results and other existence theorems concerning 
such BVP's and periodic solutions of d.d.e.'s will appear elsewhere. 
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