C*-ALGEBRAS OF TRANSLATIONS AND MULTIPLIERS1 BY C. A. BERGER AND L. A. COBURN Communicated by P. R. Halmos, March 25, 1968 - 1. Introduction. In this note we announce several results about C^* -algebras generated by multiplication and translation operators on L^2 -spaces of compact abelian topological groups. The main result, for which the proof is indicated, is that such algebras contain no nontrivial compact operators. It follows that no irreducible, separable C^* -subalgebras of such an algebra can be Type I [2]. We also point out that there are *-isomorphisms between such C^* -algebras on the circle and related C^* -algebras of weighted shifts. - 2. **Main result.** Let G be a compact abelian topological group with normalized Haar measure $d\nu$ and consider the associated complex Banach spaces $L^1(G)$, $L^2(G)$, $L^\infty(G)$ and the corresponding real Banach spaces of real-valued functions $L^1_R(G)$, $L^2_R(G)$, $L^\infty_R(G)$. For a in G, an operator T_a is defined on $L^2(G)$ by $$(T_a f)(x) = f(xa).$$ For $\phi(x)$ in $L^{\infty}(G)$ we can define an operator M_{ϕ} on $L^{2}(G)$ by $$(M_{\phi}f)(x) = \phi(x) \cdot f(x).$$ We denote by $\tau(G)$ the C*-algebra generated by all T_a and M_{ϕ} . LEMMA 1. Suppose that for M>0 and ϕ_n in $L^{\infty}(G)$, $1 \le n \le k$, there are $a_i^{(n)}$ in G and real $c_i^{(n)} \ge 0$ with $1 \le i \le m(n)$, $\sum_{i=1}^{m(n)} c_i^{(n)} = 1$ and $$\left| \sum_{i=1}^{m(n)} c_i^{(n)} \phi_n(x a_i^{(n)}) \right| < M$$ for almost all x in G. Then there are real $c_j \ge 0$ and a_j in G such that $\sum_{i=1}^{m} c_i = 1$ and $$\left| \sum_{j=1}^m c_j \phi_n(xa_j) \right| < M$$ for all $1 \le n \le k$ and almost all x. PROOF. Let j range over all multi-indices $j = (i_1, i_2, \dots, i_k)$ where $1 \le i_n \le m(n)$. Then taking ¹ Research supported by NSF Grants. $$c_{(i_1,i_2,\ldots,i_k)} = c_{i_1}^{(1)} c_{i_2}^{(2)} \cdot \cdot \cdot c_{i_k}^{(k)},$$ $$a_{(i_1,i_2,\ldots,i_k)} = a_{i_1}^{(1)} \cdot \cdot \cdot a_{i_k}^{(k)},$$ $$m = m(1) \cdot m(2) \cdot \cdot \cdot m(k)$$ gives the desired result. We are indebted to D. J. Newman for suggesting the proof of LEMMA 2. For any ϕ in $L^{\infty}(G)$ and $\epsilon > 0$, there are a_1, \dots, a_m in G and real $c_i \ge 0$ with $\sum_{i=1}^m c_i = 1$ and $$\left| \sum_{i=1}^{m} c_{i} \phi(x a_{i}) - \int \phi(x) d\nu(x) \right| < \epsilon$$ for almost all x. PROOF. By applying Lemma 1 to the real and imaginary parts of ϕ , it clearly suffices to assume that ϕ is in $L_R^{\infty}(G)$. Since $L_R^{\infty}(G)$ is the dual space of $L_R^1(G)$, the unit ball of $L_R^{\infty}(G)$ is compact in the usual weak topology. It follows that the closed convex hull of $\{T_a\phi: a \text{ in } G\}$ in $L_R^{\infty}(G)$ is compact in the weak topology. Denote this set by K. We wish to show that the constant function $\int \phi(x) d\nu(x)$ is in K. But, if not, then by the separating hyperplane theorem [3, p. 59], there is an f(x) in $L_R^1(G)$ with $$\sup_{a\in G} \int \phi(xa)f(x)d\nu(x) < \int \phi(x)d\nu(x) \int f(x)d\nu(x).$$ Now integrating with respect to $d\nu(a)$ and using Fubini's theorem, we find $$\int f(x)d\nu(x) \int \phi(x)d\nu(x) = \int f(x)d\nu(x) \int \phi(xa)d\nu(a)$$ $$= \int d\nu(a) \int \phi(xa)f(x)d\nu(x)$$ $$< \int \phi(x)d\nu(x) \int f(x)d\nu(x)$$ and this contradiction finishes the proof. Theorem 1. Let G be a compact abelian topological group which is not totally disconnected. Then $\tau(G)$ contains no nonzero compact operators. PROOF. It is easy to see that $\tau(G)$ is irreducible. Hence, it is enough [1, p. 85] to show that there is some compact operator not in $\tau(G)$. Our candidate is the operator of orthogonal projection onto the constant functions $$(Af)(x) = (f, 1)1 = \left(\int f(x)d\nu(x)\right)1.$$ Thus, we suppose that for arbitrary $\epsilon_1 > 0$, there are ϕ_n in $L^{\infty}(G)$ and b_n in G so that (*) $$\left\| \sum_{n=1}^k \phi_n(x) (T_{b_n} f)(x) - \int f(x) d\nu(x) \right\| < \epsilon_1 ||f||$$ for all f in $L^2(G)$. Now using the fact that for a in G, T_a is unitary, and considering $$T_a \left(\sum_{n=1}^k M_{\phi_n} T_{b_n} \right) T_a^* - T_a A T_a^*,$$ together with (*) yields $$\left\| \sum_{n=1}^{k} \phi_n(xa)(T_{b_n}f)(x) - \int f(x)d\nu(x) \right\| < \epsilon_1 \|f\|.$$ For $\epsilon > 0$ and $1 \le n \le k$, Lemmas 1 and 2 combine to show that there are a_i in G and real $c_i \ge 0$, $1 \le i \le m$, such that $\sum_{i=1}^m c_i = 1$ and $$\bigg|\sum_{i=1}^m c_i \phi_n(xa_i) - \int \phi_n(x) d\nu(x)\bigg| < \epsilon$$ for almost all x. Now using the triangle inequality, it follows from (**) that $$\left\| \sum_{n=1}^{k} \left[\sum_{i=1}^{m} c_i \phi_n(xa_i) \right] (T_{b_n} f)(x) - \int f(x) d\nu(x) \right\| < \epsilon_1 \|f\|.$$ Since $\epsilon > 0$ was arbitrary, it is now clear that for $$s_n = \int \phi_n(x) d\nu(x),$$ we have (***) $$\left\| \sum_{n=1}^{k} s_{n}(T_{b_{n}}f)(x) - \int f(x)d\nu(x) \right\| < \epsilon_{1} \|f\|.$$ Applying (***) to f(x) = 1 gives $$\left|1-\sum_{n=1}^k s_n\right|<\epsilon_1.$$ On the other hand, since G is not totally disconnected, G has a character χ of infinite order [4, p. 47]. Applying (***) to $\chi^r(x)$, $r \neq 0$, gives $$\left| \sum_{n=1}^k s_n [\chi(b_n)]^r \right| < \epsilon_1.$$ We now observe that by a result in elementary number theory, for any $\delta > 0$ an integer r can be found so that $r \neq 0$ and $$\left| \left[\chi(b_n) \right]^r - 1 \right| < \delta$$ for all $1 \le n \le k$. It is now clear that $$\left|\sum_{n=1}^k s_n\right| < \epsilon_1,$$ and for $\epsilon_1 \leq \frac{1}{2}$ we have a contradiction. COROLLARY. If α is an irreducible, separable C^* -subalgebra of $\tau(G)$ for G as in Theorem 1, then α cannot be Type I [2]. Proof. This is immediate by the main result of [2]. 3. Other results. For $G=T^1$, the circle, consider for fixed a of infinite order in T^1 , the C^* -algebra $\mathfrak A$ generated by T_a and $\{M_\phi: \phi \text{ continuous on } T^1\}$. It is clear that $\mathfrak A$ is irreducible and separable so the Corollary to Theorem 1 applies to $\mathfrak A$. We now introduce a (non-separable) Hilbert space H with an orthonormal basis $\{\delta_x\}_{x\in T^1}$ indexed by the points of T^1 . Thinking of the δ_x as "delta-functions" on T^1 , we are led to define operators on H by $$\tilde{T}_a(\delta_x) = \delta_{xa^{-1}},$$ $\tilde{M}_{\phi}(\delta_x) = \phi(x)\delta_x.$ Now defining $\Phi(T_a) = \tilde{T}_a$ and $\Phi(M_{\phi}) = \tilde{M}_{\phi}$, it is easy to check that Φ extends to a *-homomorphism on sums $$\sum_{n=-k}^k M_{\phi_n} T_a^n.$$ Theorem 2. The mapping Φ extends to a *-isomorphism between \mathfrak{A} and the C*-algebra generated by \widetilde{T}_a and $\{\widetilde{M}_{\phi}: \phi \text{ continuous on } T^1\}$. The interest in Theorem 2 is that $\Phi(\alpha)$ is an algebra generated by weighted two-sided shifts. This suggests the possibility of transferring certain computations on operators in α to computations in $\Phi(\alpha)$. ## REFERENCES - 1. J. Dixmier, Les C*-algebras et leurs representations, Gauthier-Villars, Paris, 1964. - 2. J. Glimm, Type I C*-algebras, Ann of Math. 73 (1961), 572-612. - 3. M. Naimark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. - 4. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962. NEW YORK UNIVERSITY AND BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY