C*-ALGEBRAS OF TRANSLATIONS AND MULTIPLIERS1

BY C. A. BERGER AND L. A. COBURN

Communicated by P. R. Halmos, March 25, 1968

- 1. Introduction. In this note we announce several results about C^* -algebras generated by multiplication and translation operators on L^2 -spaces of compact abelian topological groups. The main result, for which the proof is indicated, is that such algebras contain no nontrivial compact operators. It follows that no irreducible, separable C^* -subalgebras of such an algebra can be Type I [2]. We also point out that there are *-isomorphisms between such C^* -algebras on the circle and related C^* -algebras of weighted shifts.
- 2. **Main result.** Let G be a compact abelian topological group with normalized Haar measure $d\nu$ and consider the associated complex Banach spaces $L^1(G)$, $L^2(G)$, $L^\infty(G)$ and the corresponding real Banach spaces of real-valued functions $L^1_R(G)$, $L^2_R(G)$, $L^\infty_R(G)$. For a in G, an operator T_a is defined on $L^2(G)$ by

$$(T_a f)(x) = f(xa).$$

For $\phi(x)$ in $L^{\infty}(G)$ we can define an operator M_{ϕ} on $L^{2}(G)$ by

$$(M_{\phi}f)(x) = \phi(x) \cdot f(x).$$

We denote by $\tau(G)$ the C*-algebra generated by all T_a and M_{ϕ} .

LEMMA 1. Suppose that for M>0 and ϕ_n in $L^{\infty}(G)$, $1 \le n \le k$, there are $a_i^{(n)}$ in G and real $c_i^{(n)} \ge 0$ with $1 \le i \le m(n)$, $\sum_{i=1}^{m(n)} c_i^{(n)} = 1$ and

$$\left| \sum_{i=1}^{m(n)} c_i^{(n)} \phi_n(x a_i^{(n)}) \right| < M$$

for almost all x in G. Then there are real $c_j \ge 0$ and a_j in G such that $\sum_{i=1}^{m} c_i = 1$ and

$$\left| \sum_{j=1}^m c_j \phi_n(xa_j) \right| < M$$

for all $1 \le n \le k$ and almost all x.

PROOF. Let j range over all multi-indices $j = (i_1, i_2, \dots, i_k)$ where $1 \le i_n \le m(n)$. Then taking

¹ Research supported by NSF Grants.

$$c_{(i_1,i_2,\ldots,i_k)} = c_{i_1}^{(1)} c_{i_2}^{(2)} \cdot \cdot \cdot c_{i_k}^{(k)},$$

$$a_{(i_1,i_2,\ldots,i_k)} = a_{i_1}^{(1)} \cdot \cdot \cdot a_{i_k}^{(k)},$$

$$m = m(1) \cdot m(2) \cdot \cdot \cdot m(k)$$

gives the desired result.

We are indebted to D. J. Newman for suggesting the proof of

LEMMA 2. For any ϕ in $L^{\infty}(G)$ and $\epsilon > 0$, there are a_1, \dots, a_m in G and real $c_i \ge 0$ with $\sum_{i=1}^m c_i = 1$ and

$$\left| \sum_{i=1}^{m} c_{i} \phi(x a_{i}) - \int \phi(x) d\nu(x) \right| < \epsilon$$

for almost all x.

PROOF. By applying Lemma 1 to the real and imaginary parts of ϕ , it clearly suffices to assume that ϕ is in $L_R^{\infty}(G)$. Since $L_R^{\infty}(G)$ is the dual space of $L_R^1(G)$, the unit ball of $L_R^{\infty}(G)$ is compact in the usual weak topology. It follows that the closed convex hull of $\{T_a\phi: a \text{ in } G\}$ in $L_R^{\infty}(G)$ is compact in the weak topology. Denote this set by K. We wish to show that the constant function $\int \phi(x) d\nu(x)$ is in K. But, if not, then by the separating hyperplane theorem [3, p. 59], there is an f(x) in $L_R^1(G)$ with

$$\sup_{a\in G} \int \phi(xa)f(x)d\nu(x) < \int \phi(x)d\nu(x) \int f(x)d\nu(x).$$

Now integrating with respect to $d\nu(a)$ and using Fubini's theorem, we find

$$\int f(x)d\nu(x) \int \phi(x)d\nu(x) = \int f(x)d\nu(x) \int \phi(xa)d\nu(a)$$

$$= \int d\nu(a) \int \phi(xa)f(x)d\nu(x)$$

$$< \int \phi(x)d\nu(x) \int f(x)d\nu(x)$$

and this contradiction finishes the proof.

Theorem 1. Let G be a compact abelian topological group which is not totally disconnected. Then $\tau(G)$ contains no nonzero compact operators.

PROOF. It is easy to see that $\tau(G)$ is irreducible. Hence, it is enough [1, p. 85] to show that there is some compact operator not in $\tau(G)$. Our candidate is the operator of orthogonal projection onto the constant functions

$$(Af)(x) = (f, 1)1 = \left(\int f(x)d\nu(x)\right)1.$$

Thus, we suppose that for arbitrary $\epsilon_1 > 0$, there are ϕ_n in $L^{\infty}(G)$ and b_n in G so that

(*)
$$\left\| \sum_{n=1}^k \phi_n(x) (T_{b_n} f)(x) - \int f(x) d\nu(x) \right\| < \epsilon_1 ||f||$$

for all f in $L^2(G)$. Now using the fact that for a in G, T_a is unitary, and considering

$$T_a \left(\sum_{n=1}^k M_{\phi_n} T_{b_n} \right) T_a^* - T_a A T_a^*,$$

together with (*) yields

$$\left\| \sum_{n=1}^{k} \phi_n(xa)(T_{b_n}f)(x) - \int f(x)d\nu(x) \right\| < \epsilon_1 \|f\|.$$

For $\epsilon > 0$ and $1 \le n \le k$, Lemmas 1 and 2 combine to show that there are a_i in G and real $c_i \ge 0$, $1 \le i \le m$, such that $\sum_{i=1}^m c_i = 1$ and

$$\bigg|\sum_{i=1}^m c_i \phi_n(xa_i) - \int \phi_n(x) d\nu(x)\bigg| < \epsilon$$

for almost all x. Now using the triangle inequality, it follows from (**) that

$$\left\| \sum_{n=1}^{k} \left[\sum_{i=1}^{m} c_i \phi_n(xa_i) \right] (T_{b_n} f)(x) - \int f(x) d\nu(x) \right\| < \epsilon_1 \|f\|.$$

Since $\epsilon > 0$ was arbitrary, it is now clear that for

$$s_n = \int \phi_n(x) d\nu(x),$$

we have

(***)
$$\left\| \sum_{n=1}^{k} s_{n}(T_{b_{n}}f)(x) - \int f(x)d\nu(x) \right\| < \epsilon_{1} \|f\|.$$

Applying (***) to f(x) = 1 gives

$$\left|1-\sum_{n=1}^k s_n\right|<\epsilon_1.$$

On the other hand, since G is not totally disconnected, G has a character χ of infinite order [4, p. 47]. Applying (***) to $\chi^r(x)$, $r \neq 0$, gives

$$\left| \sum_{n=1}^k s_n [\chi(b_n)]^r \right| < \epsilon_1.$$

We now observe that by a result in elementary number theory, for any $\delta > 0$ an integer r can be found so that $r \neq 0$ and

$$\left| \left[\chi(b_n) \right]^r - 1 \right| < \delta$$

for all $1 \le n \le k$. It is now clear that

$$\left|\sum_{n=1}^k s_n\right| < \epsilon_1,$$

and for $\epsilon_1 \leq \frac{1}{2}$ we have a contradiction.

COROLLARY. If α is an irreducible, separable C^* -subalgebra of $\tau(G)$ for G as in Theorem 1, then α cannot be Type I [2].

Proof. This is immediate by the main result of [2].

3. Other results. For $G=T^1$, the circle, consider for fixed a of infinite order in T^1 , the C^* -algebra $\mathfrak A$ generated by T_a and $\{M_\phi: \phi \text{ continuous on } T^1\}$. It is clear that $\mathfrak A$ is irreducible and separable so the Corollary to Theorem 1 applies to $\mathfrak A$. We now introduce a (non-separable) Hilbert space H with an orthonormal basis $\{\delta_x\}_{x\in T^1}$ indexed by the points of T^1 . Thinking of the δ_x as "delta-functions" on T^1 , we are led to define operators on H by

$$\tilde{T}_a(\delta_x) = \delta_{xa^{-1}},$$

 $\tilde{M}_{\phi}(\delta_x) = \phi(x)\delta_x.$

Now defining $\Phi(T_a) = \tilde{T}_a$ and $\Phi(M_{\phi}) = \tilde{M}_{\phi}$, it is easy to check that Φ extends to a *-homomorphism on sums

$$\sum_{n=-k}^k M_{\phi_n} T_a^n.$$

Theorem 2. The mapping Φ extends to a *-isomorphism between \mathfrak{A} and the C*-algebra generated by \widetilde{T}_a and $\{\widetilde{M}_{\phi}: \phi \text{ continuous on } T^1\}$.

The interest in Theorem 2 is that $\Phi(\alpha)$ is an algebra generated by weighted two-sided shifts. This suggests the possibility of transferring certain computations on operators in α to computations in $\Phi(\alpha)$.

REFERENCES

- 1. J. Dixmier, Les C*-algebras et leurs representations, Gauthier-Villars, Paris, 1964.
- 2. J. Glimm, Type I C*-algebras, Ann of Math. 73 (1961), 572-612.
- 3. M. Naimark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959.
 - 4. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

NEW YORK UNIVERSITY AND

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY