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1. Introduction. In this note we announce several results about 
C*-algebras generated by multiplication and translation operators on 
L2-spaces of compact abelian topological groups. The main result, for 
which the proof is indicated, is that such algebras contain no non-
trivial compact operators. It follows that no irreducible, separable 
C*-subalgebras of such an algebra can be Type I [2]. We also point 
out that there are *-isomorphisms between such C*-algebras on the 
circle and related C*-algebras of weighted shifts. 

2. Main result. Let G be a compact abelian topological group with 
normalized Haar measure dv and consider the associated complex 
Banach spaces Ll(G), L2(G), L™(G) and the corresponding real Ba-
nach spaces of real-valued functions L1

R(G)i L2
R(G), LR(G). For a in G, 

an operator Ta is denned on L2(G) by 

(Taf)(x) =f(xa). 

For <j>(x) in L°°(G) we can define an operator M<t> on L2(G) by 

(M,f){%) = *(*)•ƒ(*). 

We denote by T(G) the C*-algebra generated by all Ta and M^. 

LEMMA 1. Suppose that f or M>0 and (j>n in I/°°(G), l^n^k, there 
are a,(w) in G and real cf ^ 0 with l^i^m(n), ][$$ c£n) = 1 and 

Ci <t>n(xai ) 
»»1 

< M 

for almost all x in G. Then there are real Cj^O and a,- in G such that 

] £ Cj4>n(xa3) <M 

for all l^n^k and almost all x. 

PROOF. Let j range over all multi-indices j = (ii, i2l • • • , 4) where 
l^in^m(n). Then taking 
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c(<i»<2i • • • .<* ) "~ c*h c h 

( l ) 

w = m(l)-m(2) - - -

' ' ' ch > 

m(k) 

gives the desired result. 

We are indebted to D. J. Newman for suggesting the proof of 

LEMMA 2. For any <j> in L°°(G) and e>0 , there are ai, • • • , am in G 
and real d ^ 0 with X^L x d = 1 and 

^2 Ci<l>(xai) — I 4>(x)dv(x) < € 

for almost all x. 

PROOF. By applying Lemma 1 to the real and imaginary parts of 0, 
it clearly suffices to assume that <t> is in L% (G). Since L% (G) is the dual 
space of L\(G), the unit ball of L%(G) is compact in the usual weak 
topology. I t follows that the closed convex hull of {Ta<t> : a in G} in 
LR(G) is compact in the weak topology. Denote this set by K. We 
wish to show that the constant function f<j>(x)dv(x) is in K. But, if not, 
then by the separating hyperplane theorem [3, p. 59], there is an 
f(x) in L\(G) with 

sup I <t>(xa)f(x)dv(x) < I <t>(x)dv(x) I f(x)dv(x). 
aeo J J J 

Now integrating with respect to dv(a) and using Fubini's theorem, 
we find 

I f(x)dv(x) I <t>(x)dv(x) = I f(x)dv(x) I <f>(xa)dv(a) 

= I dv{a) I <l>(xa)f(x)dv(x) 

< f 4>{x)dv{x) I f{x)dv(x) 

and this contradiction finishes the proof. 

THEOREM 1. Let G be a compact abelian topological group which is 
not totally disconnected. Then r(G) contains no nonzero compact op-
erators. 
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PROOF. I t is easy to see that T(G) is irreducible. Hence, it is enough 
[l, p. 85] to show that there is some compact operator not in r(G). 
Our candidate is the operator of orthogonal projection onto the con­
stant functions 

(Af)(x) = (ƒ, 1)1 «(J/(*)iK*))i. 

Thus, we suppose that for arbitrary €i>0, there are <j>n in L°°(G) and 
bn in G so that 

H E*.(*)(nj)(*)- f ƒ(*)*(*) < « 1 

for all ƒ in L2(G). Now using the fact that for a in G, Ta is unitary, 
and considering 

r o ( E M<i>nTbn \ Ta— Ta A Tay 

together with (*) yields 

/**\ itUxaXnjXx) - f f(x)dp(x)\\ < 4f\\. 

For € > 0 and 1 Sn^k, Lemmas 1 and 2 combine to show that there 
are a» in G and real c*^0, l^i^m, such that 23?Li £» = 1 and 

X^ Ci4>n(xai) — I <l>n(x)dv(xt 
*-l J 

< € 

for almost all a\ Now using the triangle inequality, it follows from 
(**) that 

II & r m - l /» 

II n=l L i=l J •/ 

Since e > 0 was arbitrary, it is now clear that for 

< * 

we have 

Zsn(ThJ)(X)- ff(x)dv(x) <«J 
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Applying (***) to ƒ(#) = ! gives 

1 — Y, sn < € l . 

On the other hand, since G is not totally disconnected, G has a char­
acter x of infinite order [4, p. 47]. Applying (***) to xr(*0> r^O, gives 

Z*»[x(*»)] r < €l. 

We now observe that by a result in elementary number theory, for 
any ô > 0 an integer r can be found so that r^O and 

I [x(bn)Y - 11 < 8 

for all 1 ^n^k. I t is now clear that 

] £ sn < € i , 

and for € i ^ | we have a contradiction. 

COROLLARY. If & is an irreducible, separable C*-subalgebra of r{G) 
for G as in Theorem 1, then (X cannot be Type I [2]. 

PROOF. This is immediate by the main result of [2]. 

3. Other results. For G=T1, the circle, consider for fixed a of 
infinite order in Tl, the C*-algebra d generated by Ta and {M<j>:<j> 
continuous on T1}. I t is clear that G, is irreducible and separable so 
the Corollary to Theorem 1 applies to <$. We now introduce a (non-
separable) Hubert space H with an orthonormal basis {ôx}xeT

l in­
dexed by the points of T1. Thinking of the ôx as "delta-functions" on 
T1, we are led to define operators on H by 

Ta(àx) = ôaw-i, 

#0(8*) = <Kx)*z. 

Now defining $(Ta) = Ta and ^{M^) = Af0, it is easy to check that $> 
extends to a *-homomorphism on sums 

THEOREM 2. TTie mapping <£ extends to a ^-isomorphism between (X 
and the C*-algebra generated by Ta and { M^\ <j> continuous on T1}. 
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The interest in Theorem 2 is that $(0fc) is an algebra generated by 
weighted two-sided shifts. This suggests the possibility of transferring 
certain computations on operators in Ct to computations in $(Ct). 
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