
MEASURE THEORETIC GEOMETRY AND 
ELLIPTIC VARIATIONAL PROBLEMS1 

BY F. J. ALMGREN, JR. 

1. This article is intended as a survey of some of the phenomena 
and some of the recent results associated with higher dimensional 
boundary value problems in "parametric form" in the calculus of 
variations. These boundary value problems arise in the following 
way: Suppose m and n are positive integers and one is given a reason­
ably nice function F: Rm+nXTm—>i?+ where Tm denotes the Grass-
mann manifold of all unoriented m plane directions in Rm+n (which 
can be regarded as the space of all unoriented m dimensional planes 
through the origin in Rm+n). If S is a reasonably nice surface of dimen­
sion m in i?m+n , one defines the integral F(S) of F over S by setting 

FÇS) - f F(x, S(x))dHmx 
J xes 

where S(x) denotes the tangent m plane direction to 5 at x and Hm 

denotes m dimensional Hausdorff measure on Rm+n. Hausdorff m 
dimensional measure gives a precise meaning to the notion of m 
dimensional area in Rm+n and is the basic measure used in defining a 
theory of integration over m dimensional surfaces in Rm+n which may 
have singularities. The Hausdorff m dimensional measure of a smooth 
m dimensional submanifold of Rm+n agrees with any other reasonable 
definition of the m area of such a manifold. With this terminology the 
problem can be stated: 

PROBLEM. Among all m dimensional surfaces S in i?m+n having a 
prescribed boundary, is there one minimizing F(S)7 And if there is, how 
nice is it? 

To make this problem precise there are, of course, several questions 
to be answered: 

(1) What is a surface? 
(2) What is the boundary of a surface? 
(3) What are reasonable conditions to put on F? 
To see what is involved in answering these three questions, it is 

useful to consider some of the phenomena which arise. For these 
examples, we fix F to be identically 1. F(S) is thus the m dimensional 

*An address delivered to the Society on April 12, 1968 by invitation of the Com­
mittee to Select Hour Speakers for Eastern Sectional Meetings; received by the 
editors September 26, 1968. 
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area of S and the problem is that of finding a surface of least m dimen­
sional area among all surfaces having a prescribed boundary. This 
problem is sometimes known as Plateau's problem (in honor of the 
Belgian physicist, J. Plateau, of the last century who, among other 
things, studied the geometry of soap films). 

The first person to make significant progress on the study of 
Plateau's problem was the late J. Douglas. He showed, in particular, 
the following result [D] : If C is a simple closed rectifiable curve in Rd 

and Do is the two dimensional disk, then among all continuous map­
pings DQ-^>RZ which map dD0 homeomorphically onto C and are 
smooth on the interior of D0 there is a mapping ƒ of least area, where 
the area of ƒ means 

f \Md/duAd/dv)\dH2 

when u and v are orthonormal coordinates for D0 or, equivalently, 
the Hausdorff 2 dimensional measure oîf(DQ) counting multiplicities, 
i.e. 

f N(f, x)dH2x 

where N(f, x) is the number (possibly oo) of points in f~l(x). The 
equivalence of these two integrals for the area of ƒ indicates one of the 
reasons it is sometimes useful to consider surfaces with multiplicities. 
(The multiplicity of the integral varifold f§\ D0\ equals N(f, x) for H2 

almost all x.) There are no known direct generalizations of this result 
of Douglas to higher dimensional disks and higher dimensional areas, 
and the methods of Douglas are strictly 2 dimensional. 

Suppose again that C is a simple closed rectifiable curve in Rz and 
Dm denotes the 2 dimensional disk with m handles for m = 0, 1, 2, • • • 
(see Figure 1). 

FIGURE 1. 
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Let Am denote the infimum of the areas of the continuous mappings 
Dm—>RZ which map dDm homeomorphically onto C and which are 
smooth on the interior of Dm. In general, mappings realizing this 
infimum value are not known to exist. Since one can always "pinch 
out" a handle before mapping Dm into Rz, one has Ao^Ai^A2^ • • • 
è l im m Am^0. W. H. Fleming [FL l ] has shown, however, that if the 
curve C resembles that shown in Figure 2, then one has the strict 
inequalities A0>Ai>A2> • • ->limm Am>0. 

FIGURE 2. 

This curve C is a simple closed unknotted curve of finite length which 
is smoothly imbedded except at one point. If one wishes to find an 
oriented surface of absolute least area among such surfaces having C 
as boundary, i.e. whose area equals limm Am, then there does not exist 
such a surface having finite topological type since the list of Am's 
contains every compact orientable 2 dimensional manifold having a 
circle as boundary. On the other hand there does exist a surface, 
sketched in Figure 3, which deserves to be called the oriented surface 
of least area having C as boundary. Its area is limTO Am and this sur-

FIGURE 3. 
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face at all interior points is a 2 dimensional real analytic manifold 
having 0 mean curvature. Topologically this surface is a disk with a 
countable number of handles converging to a boundary point. This 
example illustrates why in order to solve the least area problem, and 
really achieve the least area, one sometimes has to admit surfaces of 
infinite topological type into competition. 

The following example due to H. Fédérer [F4, 4] . Let V denote a 
complex algebraic variety of complex dimension k in complex n 
dimensional space Cn, and regard F as a real 2k dimensional surface 
oriented by its complex structure. Now let Vo denote a bounded 
relatively open subset of V having a well-defined oriented boundary 
of finite 2k — 1 dimensional measure, and let W be another oriented 
surface with dW=dVo. Then the 2k dimensional area of W is at least 
as large as the 2k dimensional area of Vo, and this is true whether or 
not Vo contains singularities. In particular, Vo is a solution to 
Plateau's problem for oriented 2k dimensional surfaces having dVo 
as boundary provided one is willing to admit complex algebraic vari­
eties as solutions. If one does admit complex algebraic varieties as 
solutions, then one must accept as singularities in solutions to 
Plateau's problem at least all the singularities which occur as singu­
larities in complex algebraic varieties. 

There are other reasons which force surfaces of least area to have 
singularities. R. Thorn [T, 111.9] has given an example of a compact, 
real analytic, 14 dimensional manifold M having a 7 dimensional 
integral homology class a which cannot be represented by a smoothly 
imbedded, or even a smoothly immersed, differentiable manifold of 
dimension 7. On the other hand every integral homology class in 
every compact Riemannian manifold can be represented by an ori­
ented surface (more precisely a minimal integral current) of least 
area among all surfaces representing that class [FF, 9.6]; in particu­
lar there is a 7 dimensional surface S in M representing <r which has 
area no larger than that of any other surface representing a. S must 
contain singular points; otherwise it would be a 7 dimensional real 
analytic submanifold of M and as such contradict the result of 
Thorn. 

To see what is involved in the question of boundaries, it is useful 
to ask what solution one would like for certain least area problems 
for simple closed curves. There is one case about which everyone 
agrees: if C\ is a standard circle then the unique surface of least area 
having Ci as boundary should be the flat disk Si (Figure 4). 

Suppose C2 is a curve which lies close to a circle but which goes 
around twice before it rejoins. One strong candidate for the surface 
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o. 
FIGURE 4. 

of least area having CT. as boundary is a Möbius band S2 (see Figure 
5). 

Such a surface exists as a soap film on a boundary wire bent in the 
shape of C%y and it also exists as a mathematical minimal surface of 
absolute least area in competition with all surfaces having C2 as 
boundary in the sense of homology with coefficients in the integers 
modulo 2. Now suppose C% is a curve which lies close to a circle but 
which goes around three times before it rejoins itself. It is useful to 
think of such a curve as lying on a torus and being swept out as three 
equally spaced points on a meridian circle travel around the torus the 
long way while the meridian circle makes one third of a revolution 
(see Figure 6). 

One strong candidate for the surface of least area having boundary 
Cz is a triple Möbius band S3 (Figure 6) which is swept out by a F 
shaped piece of curve between the three equally spaced points on a 

Ci 
FIGURE 5. 
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FIGURE 6. 

meridian circle as this circle travels around the torus. Such a surface 
as S3 exists as a soap film on a boundary wire bent in the shape of C8, 
and it also exists as a mathematical minimal surface of absolute 
least area in competition with all surfaces having Cz as boundary in 
the sense of homology with coefficients in the integers modulo 3. 

Suppose now one forms a new simple closed curve C4 which looks 
like C2 on the left attached by a thin bridge to Cz on the right (Figure 
7). 

FIGURE 7. 
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One probably should want the surface 5 4 of least area having C4 as 
boundary to look like S2 on the left attached to S3 on the right by a 
thin ribbon of surface. Such a surface 5 4 exists as a soap film on a 
boundary wire in the shape of C4 and also exists as a mathematical 
minimal surface. On the other hand, F. Adams has constructed a 
continuous map (54, C4)—»(C4, C4) retracting S4 onto C4 [Rl, p. 80]. 
Thus in no way in the sense of algebraic topology does the surface 
S4 have the curve C4 as its boundary. In particular, in order to study 
surfaces of the type of 5 4 as solutions to variational problems, one 
needs alternative notions of boundary to those of algebraic topology. 

There is another phenomenon which should be mentioned at this 
point. If one bends a wire in the shape indicated in Figure 8-1 and 
dips it in a soap solution, one of the soap films which can form is 
sketched also in Figuie 8-2. Note the singular curve where the two 
sheets of surface "pass through each other." If one punctures the 
lower region, surprisingly the entire film is not destroyed, but rather 
assumes the shape sketched in Figure 8-3. Here then is a "minimal 
surface" which does not touch all of its boundary, and one can even 
cut off the extra boundary without destroying the film. A mathe­
matical minimal surface like that of 8-3 does exist, but only on a wire 
having positive thickness, i.e. no such surface can exist on an in­
finitely thin boundary. 

2. Surfaces as measures and surfaces as maps. One approach to 
studying variational problems in the generality suggested by the 
preceding examples is based on a correspondence between suitable 
surfaces and measures on appropriate spaces. Indeed, the natural 
setting for parametric2 problems in the calculus of variations seems 
to be that in which surfaces are regarded as intrinsically part of 
Rm+n (in particular as measures on spaces associated with Rm+n) 
rather than that in which surfaces are regarded as mappings from a 
fixed m dimensional manifold, even though this approach necessitates 
giving up most of the traditional methods of functional analysis for 
showing the existence of solutions. The following are the main reasons 
for formulating the problem in this way. 

2 Traditionally one has considered surfaces as mappings ƒ from a fixed m dimen­
sional manifold M into Rm+n and attempted to minimize the integral of a suitable in­
tegrand. If the integrand depends only on xGM, ƒ(*), and Df(x) and if the integral of 
the integrand is independent of the parametrization of M (as is the case, for example, 
for the area integrand, but is not the case for most *'energy" integrands), the varia­
tional problem said to be in parametric form [Ml, 9.1]. Problems in parametric form are 
precisely those problems for which the necessary integration can be performed over 
the image f(M) in Rm+n. 
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FIGURE 8. 

(1) If one regards surfaces as mappings from a fixed compact m 
dimensional manifold, then the resulting theory cannot take into 
account the phenomena of the examples. Indeed one cannot consider 
surfaces of infinite topological type, or surfaces having singularities 
not realizable by mappings (like those of the surface 5 3 of Figure 6), 
or surfaces having boundaries defined in more sophisticated ways. 

(2) Many significant results have been obtained from the study 
of parametric problems in the measure theoretic setting [A2], [A4], 
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[A5], [DG1], [F4], [FS], [FF], [FL2], [FL3], [Ml, 10], [Rl] , 
[R2], [R3] in contrast with the virtual absence of such results in 
higher dimensions and codimensions in the mapping setting. 

(3) I t seems reasonable to hope that once the singularities of 
measure theoretic solutions are understood, one will be able to solve 
the mapping problem as a consequence. 

(4) The topological methods of the Morse theory are available in 
the measure theoretic setting [A2] in contrast, with the absence of 
such methods in the mapping setting, i.e. the "Condition (C)w of 
R. Palais and S. Smale [PS] is not satisfied by any variational prob­
lem in parametric form. 

(5) The techniques developed in the study of variational problems 
in the measure theoretic setting have aided in the solution of related 
problems; for example: 

(a) Proof of regularity almost everywhere of weak solutions to 
some nonlinear elliptic systems of partial differential equations 
[M2], [GM]. 

(b) Generalizations of Bernstein's theorem in dimensions up to 8 
[A4], [DG2], [FL2], [S]. 

(c) Various long-standing questions in the theory of Lebesgue 
area have been settled [F3]. 

(d) The basic theorems of integral geometry have been proved in 
their most natural generality [B]. 

(6) In the measure theoretic setting, many important geometric 
constructions are available whose analogues in spaces of mappings 
appear unnatural [Al], [A2], [A5j, [FF], [FL2], [FL3], [Rl] , [R2]. 

3. Geometric measure theory. The creation of a natural and 
powerful theory of measure and integration over m dimensional 
surfaces in i?m+n which may contain nontrivial singularities has, 
more than anything else, been the object of those results in mathe­
matics collectively called "geometric measure theory.n I t is now 
understood, for example, in what natural generality Stokes' Theorem 
is true [F4, 2.2], A definitive work, Geometric Measure Theory, cover­
ing both general measure theory and geometric measure theory, will 
be published by H. Fédérer within the next year. Among those who 
have made major contributions to distinctly geometric measure 
theory are A. S. Besicovitch, A. P. Morse, H. Fédérer, W. H. Fleming, 
E. De Giorgi, and E. R. Reifenberg. Also H. Whitney's definition of 
the "flat norm" has been crucial in some applications, and L. C. 
Young's "generalized surfaces" were a predecessor to normal and 
integral currents. 
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The following definitions are essential in discussing geometric 
measure theory. 

(a) Hausdorff measure. For each k, O^k^m+n, Hk denotes 
Hausdorff k dimensional measure in Rm+n. For AQRm+n, Hk(A) 
equals the limit as r—»0+ of the infimum of the sums ^ J B S F 2~ka(k) 
diameter (5)* corresponding to all countable coverings F of A such 
that diameter (B) <r for B £ F. Here a(k) denotes the k area of the 
unit k ball. Hk is a Borel regular measure with Hm+n equal to Lebesgue 
measure Lm+W. 

(b) Rectifiable sets. A set SC.Rm+n is called k rectifiable if and only 
if S is bounded, Hk measurable, and for each e > 0 there exists a com­
pact k dimensional submanifold M of Rm+n of class 1 such that 
fllb( [S~M]\J [M~S]) <€. If 5 is k rectifiable then for Hk almost all 
# £ S , S has an approximate tangent plane S ( # ) £ I V The mapping 
S: S—»r* sending if* almost all x £ 5 to S(#) is Hk measurable. By an 
oriented k rectifiable set 5, one means a k rectifiable set S together 
with an Hk measurable map S* : S—>Tk* of S into the Grassmann 
manifold Tk* of oriented k plane directions in Rm+n with goS* = S Hk 
almost everywhere, where g: Tk*—*Tk is the natural covering. 

(c) Purely unrectifiable sets. A set UQRm+n is called purely k un-
rectifiable if and only if U is bounded and Hk measurable and U con­
tains no k rectifiable subset of positive Hk measure. 

The key role of Hausdorff measure, rectifiable sets, and purely 
unrectifiable sets is illustrated in the following theorem (due in gen­
eral dimensions to H. Fédérer [F1, 9.6]). 

STRUCTURE THEOREM FOR SETS OF FINITE HAUSDORFF MEASURE. 

(1) Let A QRm+n be bounded and Hk measurable with Hk(A) < oo. Then 
A =RKJU Hk almost uniquely where R is k rectifiable, U is purely k 
unrectifiable, and Rf\ U= 0. 

(2) If U(ZRm+n is purely k unrectifiable, then Hk(ir(U)) =0for almost 
all orthogonal projections ir: Rm+n—*Rk in the usual orthogonally invari­
ant measure on the space of such projections. 

4. Measure theoretic surfaces. The most commonly used measure 
theoretic surfaces are the following: 

(a) Variational measures. If SCRm+n is m rectifiable, the variation 
measure | |S| | associated with S is given by the formula | |S| | =HmC\S 
(i.e. \\S\\(A)=Hm(Sr\A) for AQRn). \\S\\, of course, determines 
5 Hm almost uniquely but it is difficult to evaluate F(S) from | |S| | 
alone. 

(b) Integral varifolds. If SQRm+n is m rectifiable, the integral vari-
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fold ISI is given by the formula 

I s I =MHmns) = <MNI)> 
where <f>: Rm+n-*Rm+nXTm, <j>{x) = (x, S(x)) for | |S| | almost all x in 
Rm+n, i.e. 

\s\(B) = Hm(Sr\ {x: (x, S(x)) G B}) for B C Rm+n X Tm. 

Note that F(S) =fFd\S\. A measure 7 on i ? w + n x r m is called an 
integral varifold of dimension m if and only if there exists a uniformly 
bounded family Si, S2, 53, • • • of w rectifiable sets such that V 
= Z < I S<| and M(V) = 2 * fl"«(5<) < «>. Vm(Z+) denotes the family 
of all m dimensional integral varifolds in Rn+n. Lipschitzian maps ƒ 
of Euclidean spaces induce maps fy of Vm(Z+) in a natural way. For 
variational problems in the varifold setting, the following extension 
of the notion of mean curvature is often important. For VÇzVm(Z+) 
and WEVm-i(Z+) one sets 

^ s u (d/dt)M(v(t, .)jV) l^o - (<*/dQMfr#([0, <] X WQ) | -
S U P (d/dt)M(vt([0, t] X 7)) | M 

where the supremum is taken over all class 3 deformations v: R Xi?m+W 

->ip»+» with z;(0, *) = #, xERm+n, and (d/dt)M(v§([0, *]X V))\ ,_ 0 >0. 
If I f is a compact class 2 manifold of dimension w, then (P(| M | , | dM\ ) 
equals m times the maximum mean curvature of M in i?m + n , this 
maximum being taken over all points and all normal directions at 
each point. If ¥ is a minimal submanifold, then, of course, 
<P(| M\, \dM\ ) = 0. Suppose WeVm^(Z+) and VeVm(Z+). One calls 
V stationary for the boundary W if and only if (P(F, PF) = 0 and regw-
lar for the boundary W if and only if (P(F, WO < 00. Stationary inte­
gral varifolds seem to include mathematical models for all soap films 
while regular integral varifolds seem to include models for all soap 
bubbles (see Figure 9). Among the most important properties of the 
spaces of surfaces commonly used in geometric measure theory are 
their compactness properties. For integral varifolds one has 

COMPACTNESS THEOREM [A2, 10.8]. Let KQRm+n be compact and 
M< 00. Then 

Vm(Z+) X Vi-i(Z+) H {(F, W): spt(F) C K, spt(«0 C K, 

M(V) £M,M(W) £M,<P(y,W) £M,(?(W,0) S M\ 

is compact in the weak topology. 
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FIGURE 9. A regular integral varifold. 

One consequence of topological arguments similar to those of the 
Morse Theory is the following existence theorem for (generally un­
stable) stationary integral varifolds. 

THEOREM [A2, 15.2]. Let MQRm+* be a compact n dimensional 
Riemanntan manifold of class 3 without boundary. Then for each 
k, Og&gw, there exists a k dimensional integral varif old lying on M 
which is stationary (for boundary 0) under every variation of Rm+n carry­
ing M into itself. 

The following results give various estimates in the large which 
depend only on bounds for (P. 

ISOPERIMETRIC INEQUALITY [A2, 8.7]. There exist (easily computed) 
constants a>0andb<oo such that ifm^2, V£Vm(Z+), WEKn-i(Z+) 
wtth 

<?(V, W)mM(V) £ a, 

then 

M(V) £ bM(W)m"m~lK 

THEOREM. There exists an easily computed constant 0 0 such that if 

V E Vm(Z+), W E V—i(Z+), <P(Y, W) « 0, 

dist(0, spt(JF)) ^ R > 0, dist(0, spt(F)) Û R - « > 0, 

then M(V)^C(Rt)m*K 
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THEOREM [A2, 8.2(3)]. Let VEVm(Z+), WeVm^(Z+)t <P(F, W) 
= 0. Then r"mM(VT\{x: \x\ <r}) is monotonically nondecreasing as 
a junction of rfor 0<r<dis t (0 , spt(WO)-

THEOREM [A2, 9.4). There exists 2<L< 00 with the following prop­
erty. Suppose: V^Vm(Z+)9 W^Vm^(Z+) with (P(7, W0=0. If 
spt(W0C-4 = {x: \x\ g l or |#—v\ g l } , for some v^Rm+n with 
\v\ ^L,thenspt(V)CA. 

(c) Integral currents. If S is an oriented m rectifiable subset of 
jRm+n, the current associated with S is the continuous linear function 
S: Em—>R on the space Em of C* m forms on i?m+w given by S(<j>) =fs<t> 
for each 0 £ £ w . 5 can also be regarded as an m vector valued measure 
on Rm+n in which case, S{<j>)—f<t>dS. A current Q: Em—>R (i.e. con­
tinuous linear functional) is called an integral current (or Z chain) if 
and only if there exist a uniformly bounded disjointed family Su 52, 
Szt - • • of oriented m rectifiable sets and a uniformly bounded dis­
jointed family Tu T^ r3, • • • of oriented m — 1 rectifiable sets such 
that Ç = X)»' *Si a n d d(? = £ * ^ f which means for each #£jEm , Q(<f>) 
= Y,iiJ<t>dSi, and for each ¥ £ £ — \ 3Ç(*) = X)<*/¥dr, = Q(d¥), 
and such that M«?) = £ , *flr«(5*) < 00 and AT0Q) = ] £ , iHm-i(Ti) 
< 00. Zm(Z) denotes the space of all m dimensional integral currents 
in Rm+n. Zm(Z) has its usual weak topology and also the topology of 
the flat norm L: Zm(Z)->R+ given by L(Q)=ini{M(Q-dR)+M(R): 
RÇ£Zm+i(Z)}. These topologies agree on suitably bounded subsets of 
Zm(Z), and M is lower semicontinuous in these topologies. The fol­
lowing results indicate some of the desirable properties of integral 
currents. 

COMPACTNESS THEOREM [FF, 8.13]. Let KCRm+n be compact and 
M<«>. Tlten Zm(Z)C\ {(?: spt«?)CK, M(Q)£M, M(dQ)^M] is 
compact in both the weak and the L topologies (and for elliptic integrands 
F, the f unction sending QÇ£Zm(Z) to fQF is lower semicontinuous). 

THEOREM [FF, 5.11]. If BQAQRm+n are Lipschitz neighborhood 
retracts (for example differentiable submanifolds) then the homology 
groups of the chain complex 

ro+n 
0 Zk(Z)C\{Q: spt(Q) C A, spt(0Q) C B) 
*-o 

are naturally isomorphic with the singular homology groups of (A% B) 
with coefficients in Z. As one consequence, each m dimensional homology 
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class of (A, B) can be represented by an m dimensional integral current 
of least mass in that class. 

THEOREM [Al, 7.1]. If BQA are compact Lipschitz neighborhood 
retracts in Rm+n then there is a natural isomorphism 

7n(Zm(A, B; Z); 0) ^ Hi+m(A, B; Z) 

between the ith homotopy group of the space Zm(A, B; Z)=Zm{Z) 
n { Ç : s p t ( Ç ) C - 4 , spt{dQ)CB) and the (t+m)th singular homology 
group of (A, B) with coefficients in Z. This fact, in particular, is pre­
cisely the topological information relevant to Morse theory methods for 
finding higher dimensional minimal surfaces. 

(d) G chains. Suppose G is a finitely generated abelian group with 
a translation invariant norm | | . By a G chain Qy one means a sur­
face having multiplicities in G and having a well-defined boundary. 
More precisely Q is a G chain of dimension m if and only if there exist 
a uniformly bounded disjointed family {Sg: gCzG~{0} } of oriented 
m rectifiable subsets of Rm+n and a uniformly bounded disjointed 
family {T0: g(EG~ {0} } of m — 1 rectifiable subsets of Rm+n such that 

Q = Z g/Sg and dQ = E gTg, 
geG~io} g€G~{o] 

a n d M ( 0 = E UI H.(5.) < » and M(dQ) - 2 1 * 1 «"—i(r.) < » . 
a o 

Here dQ is defined in the sense of homology theory. One denotes by 
Zm(G) the space of all G chains of dimension m in Rm+n. Zm(G) usually 
carries the topology of the flat norm L: Zm(G)—>R+ given by 

L(Q) = inf{M(Ö - dR) + M(R): R G Z^G)}. 

The three theorems for Z chains in the preceding section remain true 
with G replacing Z [FL, 3]. 

5. One formulation of the problem. As the variety of different 
measure theoretic surfaces suggests, there are a number of different 
ways in which the problem of finding an F minimal surface having a 
prescribed boundary can be formulated. The following formulation 
is an especially fundamental one. 

DEFINITIONS, (a) A surface S is a compact m rectifiable subset of 
Rm+n. 

(b) A boundary B is a compact m — 1 rectifiable subset Rm+n. 
(c) Hm-i(B; G) denotes the m —1 dimensional Vietoris homology 

group of B with coefficients in a finitely generated abelian group G. 
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For or£i7m_i(j8; G) Cintuitively a is a hole in B) we say that 5 spans 
a if and only if i*(cr) = 0 where 

is induced by the inclusion i: B—>B\JS. 
(d) An integrand F: Rm+nXTm->R+ is called elliptic with respect to 

G if and only if there is a continuous positive function c: Rm+n—* R+ 
such that for each #£ i? m + n , each m disk D in Rm+n, and each sur­
face S which spans some 

F*(S) - F*(Z>) ^ c(*)[ff«(S) - «•(/>)] 

where Fx is the integrand given for yÇ£Rm+n
f j £ r m by the formula, 

Fx(y, T) = F(x, 7r). If the codimension n equals 1, the ellipticity of F 
with respect to any G is equivalent to the uniform convexity of each 
Fx. The set of elliptic integrands contains a (computable) convex 
neighborhood of the m area integrand F= 1 in the C(2) topology. Also 
if R™>+n-±Rm+n {s a diffeomorphism thenf#F is elliptic if and only if F 
is. This fact extends the results of the following theorem from Rm+n 

to compact m+n dimensional Riemannian manifolds without bound­
ary of class j+1. Finally the ellipticity of F implies that the various 
Euler equations which arise are elliptic systems of partial differential 
equations, and "in the small" the ellipticity of F is equivalent to the 
ellipticity of these systems. 

With this terminology one can state the following theorem : 

THEOREM [A5, 1.4]. 

HYPOTHESES. (1) Let B be a boundary. 
(2) Let G be a finitely generated abelian group. 
(3) Let aGH^B, G). 
(4) Let F: Rm+nXTm—*R+ be an integrand of class j*t3 which is 

elliptic with respect to G and which is bounded away from 0. 
CONCLUSION. There exists a surface S with the following properties : 
(1) S spans ex. 
(2) F(S)^F(T) whenever T is a surface which spans <r. 
(3) Except possibly for a compact singular set of zero Hm measure, S 

is an m dimensional submanifold of Rm+n of class j — 1 . 

6. Construction of elliptic partial differential equations having 
discontinuous solutions. The invariance of the family of elliptic 
integrands F: Rm+nXTm—»i?+ under diffeomorphisms of Rm+n and 
the fact that the Euler equations associated with these integrands 
are elliptic systems of partial differential equations give an easy way 
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of making partial differential equations whose solutions have various 
singularities, including discontinuities. For example, let F:R*XT% 
—>{1} be the 2 dimensional area integrand in R3 and consider the 
problem of finding a function ƒ : R2C\ {(x, y): x2+y2^l }—+R such 
that ƒ(x, y)=0 for x2+y2 = l and whose graph {(x, y, z): x2+y2^l 
and z=f(x9 y)) has the smallest area among all such functions. In 
particular, we are asking tha t / sa t i s fy the minimal surface equation. 
The unique solution is, of course , /=0 . Now let h: RZ—>RZ be a class 
oo diffeomorphism which leaves {(x, y, z): x2+y2 = l and 3 = 0} fixed, 
carries {(x, y, z): —1/2^x^1/2, y=z = 0\ isometrically onto 
{(x, y, z): — 1 / 2 ^ 2 ^ 1 / 2 , x=y = 0}, and carries {(x, yy z):x2+y2 

5*1, 2 = 0}^^{ (#, y, z): — l / 2 ^ x g l / 2 , y=z = 0} onto the graph of a 
class » function g: {(xf y):0<x2+y2^l}—>R (see Figure 10). 

FIGURE 10. 

The function g is clearly the unique natural solution to the Euler 
partial differential equation associated with the variational problem 
for the integrand héF. This partial differential equation is elliptic and 
of class oo. g, of course, is not continuous at (0, 0). 

7. Minimal integral currents. As has been indicated there are a 
number of different natural formulations of calculus of variations 
problems in the measure theoretic setting. For the purpose of the 
theorem in §5, we considered surfaces as compact rectifiable sets 
without orientations and without multiplicities. The singular­
ities which result (or do not result) in solutions to these problems are 
very much a function of the manner in which the problem is formu­
lated. I t is useful to give examples. First consider the problem of 
finding 1 dimensional surfaces of least length in R2 corresponding to 
homology boundary conditions with integer coefficients. Suppose the 
boundary B consists of four points spaced as in Figure 11-1. In this 
figure we have specified + and —• orientations for these points. We 
can regard these four points with their associated + ' s and —'s as a 
nonbounding cycle representing a homology class <T^HQ(B; Z). The 
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1 dimensional surface S of least Hi measure for which 4(<r)=0 is 
indicated in Figure 11-2, where **: H0(B; Z)->HQ(BKJS; Z) is induced 
by the inclusion i;B-+B\JS. One checks that H^S) = 4 + 10-3~1'2. 
One can also regard the four oriented points of B as a 0 dimensional 
integral current B*EZ»(Z). The 1 dimensional integral current 
S*EZi(Z) having least mass M among all such currents T* with 

(-) , <+) 

® T ® 

11-1-4 1 1 1 » H 

€> + ® 
(-) ' (+) 

\ 1200 y 

• > — ^ \ 

% . > Q 

11-3 

Q > 9 

FIGURE 11. 

dT* = B* is indicated in Figure 11-3. In particular, M(S*) 
= 12>ffi(S). The first formulation of the problem above in which 
surfaces are compact rectifiable sets gives the smaller total length of 
its solution surface, and, in general, this formulation gives the least 
value of the integral of an elliptic integrand for variational problems 
in all dimensions and codimensions when the boundary conditions 
are homological. However, the solution surface S has two singular­
ities of codimension 1, i.e. the two points where three line segments 
meet, while the integral current solution has no interior singularities. 
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If we consider the analogous problem for 2 dimensional minimal 
surfaces in i?3 having a boundary B consisting of two appropriately 
spaced parallel circles with the orientations indicated in Figure 12-1, 
the 2 dimensional surface of least H2 measure spanning the homology 
class in Hi(B; Z) represented by B probably looks like the surface 
in Figure 12-2 which has a circle for its interior singular set—this 
surface, incidentally, is in the shape of the soap film which most 

FIGURE 12. 

commonly forms on such a boundary. The integral current of least 
mass whose boundary is the 1 dimensional integral current repre­
sented by B consists of two parallel disks and, in particular, has no 
interior singularities (Figure 12-3). 

One often thinks of a piece of a catenoid as a surface of least area 
associated with the boundary B. This is the solution surface if one 
orients the lower circle in B in the opposite direction. For B so ori­
ented, the integral current consisting of two suitably oriented parallel 
disks has boundary B and is locally of least mass. From topological 
considerations, one can show from the existence of two distinct mini­
mal surfaces, each of least area locally, the existence of a third, gen-
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erally "unstable," minimal surface having the boundary B and lying 
inside the piece of catenoid which has least area. 

As the examples above suggest, one sometimes can formulate 
Plateau's problem in such a way as to avoid interior singularities in 
the solutions. The following theorem (with an obvious extension to 
real analytic manifolds) represents what is presently known. 

THEOREM [Ri] , [FF, 8.13], [FL3, l ] , [FL2, 4] , [A4], [S,6, 2.1], 
[AL]. Let 2^n^7 be an integer and TÇZZ*-Î(Z) in Rn [resp. T 
eZn_2(Z2) in Rn] with dT = 0. Then there exists Q^Z^Z) [resp. Q 
£Zn_i(Z2)] of least mass among all Z chains [resp. Z2 chains] having 
boundary T. For any such Q of least mass, spt(Q)~spt(T) is a real 
analytic oriented [resp. unoriented] submanifold of Rn of dimension 
n — \ having zero mean curvature at every point. If k^3 and Tis a class 
k {resp. real analytic] oriented [resp. unoriented] submanifold of dimen­
sion n — 2 lying on the boundary of a uniformly convex subset of Rn, then 
spt(Q) is a class k — 1 {resp. real analytic} manifold with boundary. 

W. H. Fleming and E. De Giorgi have shown that the above in­
terior regularity result implies the following extension of Bernstein's 
Theorem. 

THEOREM [FL2, 5] , [DG, 2], [A4], [S, 6.2.2]. Let 3^n^S and 
f: Rn~1—^R be a class 3 function satisfying the minimal surface equation. 
Then the graph off, RnC\ {x: xn=f(xl, • • • , x n - 1 ) } , is a hyper plane 
in Rn. 
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