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1. If ƒ is a continuous function on [ — 1, l ] and co/ its modulus of 
continuity, then the classical theorem of Jackson [l ] states that there 
exists a sequence of polynomials (/»[ƒ]) such that the degree of 
Jn [ƒ] is ^ n and 

max \Jn[f](x) -f(x) | g Ceo, ( — ) , n = 1, 2, • • • . 
1*1 £ i \n/ 

Various direct, but more or less involved proofs of this result are now 
available in the literature (see [2], [3], [4], [5], [ó] and [7]). In [6] 
it was shown that Legendre polynomials generate approximating 
polynomials whose deviation from ƒ on [ — 1/4, 1/4] is of the order 
co/(l/«), as in Jackson's theorem. In [7] this result was extended to a 
large class of orthogonal polynomials. 

The aim of this paper is to give a short and simple direct proof of 
Jackson's theorem by combining an inequality for positive linear 
operators which was proved recently by O. Shisha and B. Mond [8], 
with the ideas developed in [ó] and [7]. 

Let T2n(x) = cos(2n arc cos x) be the Chebyshev polynomial of 
degree 2w, an = sin(7r/4w) its smallest positive zero and 

Rn{x) = Cn[— T l , 

where cn is chosen so that fit Rn(t)dt = l. Also let 

y - s u p { | « ( * ) | : | * | £ l / 4 } . 
We shall prove here the following theorem. 

If f is a continuous function on [ — 1/2, 1/2], then the polynomial 
Kn [f] defined by 

(1) * . [ ƒ ] ( * ) = f f(t)Rn(t ~ X)dt 
J -1/2 

satisfies the inequality 

(2) \\Kn[f] -f\\ g 2 W / ( - ) + 16||/|| - , » - 1,2, . . - . 
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In order to obtain from (2) a proof of Jackson's theorem for the 
interval [ — 1/4, 1/4], it is sufficient to consider the modified poly­
nomials Kn\f] defined by Kn[f]=f(0)+Kn[f-~f(0)]. Using (2) and 
elementary properties of the modulus of continuity, we find that for 
» ^ 3 

IIZ.M -f\\ * 2^(1) + 16^(1)1 g 4W/(1). 

2. In order to simplify the proof of the theorem, we shall first 
prove the following result. 

LEMMA. F(W« = 1 ,2 , • • • we have fl^RnifidtSl/n2. 

PROOF OF THE LEMMA. We have first 

ƒ t*Rn(t)dt g ƒ (l - j*)-wvtf.( (3) J t*Rn(t)dt £ J (1 - t*)-UH*Rn(l)dt. 

Next, by Gauss quadrature formula based on the zeros of Tin, we 
have for any polynomial P of degree g 4w — 1 

/

x f 2n / 2 J - 1 \ 
(1 - P)-U*P(!)dt = S -P ( COS 7T J 

-̂i In A»i \ 4w / 

(see [9, p. US]). Since Rn is an even polynomial of degree 4w—4, 
vanishing at all zeros of T2n except at an and —an, it follows that 

J>-'2)- » 

- ob ƒ (i - e)-v*RnWt 

= «„'ƒ (i - t*y*Rn(t)dt 

+ « ' ƒ (i-«*)-*/***&,(/)<», 

i.e., 

(1 - <4) ƒ (1 - t*)-l<*t?Rn(t)dt = anj (1 - t*yi*En(fydt. 

Since f^Rniftdt = 1 and a„ = sin(7r/4«), it follows that 
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ƒ ' ( 1 - t2)-1 'H2Rn(t)dt g tan2 (w/4n) ^ l /« 2 

and the lemma is proved in view of the inequality (3). 
PROOF OF THE THEOREM. The operator Kn defined by (1) is clearly 

a positive linear operator. The inequality of Shisha and Mond 
mentioned earlier states that 

(4) \\Kjj] -f\\ =S (1 + ||tfB[l]||)«/(M») + 11/11 -||Jf.[l] - 1|| 

where /*n = ||i£n[(£—#)2](#)||1/2. Here, the operator Kn is applied to 
the variable J £ [ —1/2, 1/2], while the sup norm || || is taken with 
respect to the variable x(E [ — 1/4, 1/4] (see [8, Theorem l ] ) . Hence, 
we have only to evaluate/xn, | | i£n[ l ] — 1 | | and | | JK»[1] | | . 

We have, first, for \x\ 3*1/4 

ƒ 1/2 /• 1 

(* - x)2Rn{t - x)dt ^ I t2Rn(t)dt 
-1/2 J - 1 

and so by the lemma 

(5) »l^f t2Rn(t)dt^l/n2. 

Next, 

1 - Kn[l](x) = f Rn(t)dt - f Rn(t - x)dt 
J - 1 J -1/2 

-*+l/2 

Hence, for \x\ 3*1/4 we have 

ƒ 1 /•— x—1/2 

Rn(t)dt+ I Rn(t)dt. 
-1+1/2 J - 1 

| l - « . [ l ]W|s ( / '+ ƒ '"Ww 

s i6(/'+/D" s 
(t)dt 

1/4 

and so again by the lemma 

(6) | | l - Kn[l]\\ ^ 16 ƒ t2Rn(t)dt ^ 16/n\ 

file:////Kjj
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Finally, for |*| g 1/4 

(7) Kn[l](x) â ƒ Rn(t)dt = 1 

and (2) follows from (4), (5), (6) and (7). 
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