CROSS SECTIONALLY SIMPLE SPHERES

BY W. T. EATON

Communicated by R. H. Bing, April 16, 1968

J. W. Alexander [1] suggested that a 2-sphere S in E^3 is tame if each horizontal cross section is either a point or a simple closed curve. It is not clear whether he presumed that his proof was valid for nonpolyhedral spheres, but his proof implies that there is a homeomorphism h of E^3 onto itself which is invariant on horizontal planes and which takes S onto a round 2-sphere. Bing [6] has described a nonpolyhedral 2-sphere S for which there is no such homeomorphism h.

In this paper we give a proof of Alexander's conjecture. The proof, however, is not elementary as it depends indirectly on Dehn's Lemma [8], Bing's Side Approximation Theorem [2], and Bing's Characterization of tame spheres with homeomorphic approximations in their complementary domains [4].

We assume that S lies exactly between the planes z=1 and z=-1and we let $J_t = S \cap \{(x, y, z) | z=t\}$ be the horizontal cross section of S at the z=t plane. Note that J_t is a simple closed curve for -1 < t < 1and J_{-1} , J_1 are points. We let D_t be the disk J_t bounds in the z=tplane. The ϵ -neighborhood of a set X is denoted by $N(X, \epsilon)$, Diam A is the diameter of A, and S¹ stands for the standard 1-sphere. If $-1 < \alpha < \beta < 1$ and h is a homeomorphism of $S^1 \times [\alpha, \beta]$ into Int S such that

(1) $h(y \times [\alpha, \beta])$ is a vertical line segment for $y \in S^1$, and

(2) $h(S^1 \times t)$ lies in the plane z = t for $t \in [\alpha, \beta]$,

then A(h, t) denotes the annulus in the z=t plane bounded by $h(S^1 \times t)$ and J_i , $S(\alpha, \beta)$ denotes the annulus $S \cap \{(x, y, z) \mid \alpha \leq z \leq \beta\}$ and T(h) denotes the torus $h(S^1 \times [\alpha, \beta]) \cup A(h, \alpha) \cup A(h, \beta) \cup S(\alpha, \beta)$.

LEMMA 1. If $t \in (-1, 1)$ and $\epsilon > 0$ then there are rational numbers α and β and a homeomorphism $h: S^1 \times [\alpha, \beta] \rightarrow \text{Int } S$ such that

(1) $-1 < \alpha < t < \beta < 1$,

(2) $h(y \times [\alpha, \beta])$ is a vertical line segment for each $y \in S^1$,

(3) $h(S^1 \times r)$ lies in the horizontal plane z = r for $r \in [\alpha, \beta]$,

(4) T(h) lies in an ϵ -neighborhood of J_{ι} , and

(5) $h(S^1 \times t)$ is homeomorphically within ϵ of J_t .

PROOF. There is a simple closed curve J in the z=t plane such that $J \subset \text{Int } S$, J is homeomorphically within ϵ of J_i , and the annulus A bounded by J and J_i in the z=t plane lies in $N(J_i, \epsilon)$. J may be moved

slightly in the vertical direction so there is a $\delta > 0$ and a homeomorphism $g: S^1 \times [t-\delta, t+\delta] \rightarrow \text{Int } S$ such that $g(y \times [t-\delta, t+\delta])$ is a vertical line segment for $y \in S^1$, $g(S^1 \times r)$ lies in the z=r plane for $r \in [t-\delta, t+\delta]$ and $g(S^1 \times t) = J$. Since the annulus A(g, t) lies in $N(J_t, \epsilon)$ and $\lim_{r \to t} A(g, r) = A(g, t)$, there are rational numbers α and β such that $t-\delta < \alpha < t < \beta < t+\delta$ and $A(g, r) \subset N(J_t, \epsilon)$ if $r \in [\alpha, \beta]$. Take $h = g | S^1 \times [\alpha, \beta]$.

The following lemma is an easy consequence of the Tietze Extension Theorem and the fact that small subsets of S lie in small subdisks on S.

LEMMA 2. If D is a 2-cell and $\epsilon > 0$ then there is a $\delta > 0$ such that if f is a map of Bd D into a δ -subset of Int S then f may be extended to D so that f(D) lies in an ϵ -subset of Cl(Int S).

To establish that S is tame from Int S we show that Int S is 1-ULC and use Bing's characterization of tame 2-spheres in E^3 [3]. That Int S is 1-ULC is an easy consequence of Lemmas 2 and 3.

LEMMA 3. If f is a map of 2-cell D into Cl(Int S) such that $f(Bd D) \subset Int S$ and $\epsilon > 0$ then there is a map g: $D \rightarrow Int S$ such that f|Bd D = g|Bd D and $g(D) \subset N(f(D), \epsilon)$.

PROOF. The map f is adjusted in three steps to obtain g. In Step I, f is adjusted so that f(D) misses the points J_1 and J_{-1} . In Step II, f is further adjusted so that $f(D) \cap S$ is 0-dimensional and $f(D) \cap J_r = \emptyset$ if r is a rational number. The map f is altered in Step III so that $f(D) \subset \text{Int } S$.

Step I. There is a $\delta > 0$ such that Diam $D_{1-\delta} < \epsilon/3$, Diam $D_{-1+\delta} < \epsilon/3$, $D_{1-\delta}$ separates $f(\operatorname{Bd} D)$ from J_1 on f(D), and $D_{-1+\delta}$ separates $f(\operatorname{Bd} D)$ from J_{-1} on f(D). In two applications of the Tietze Extension Theorem, as indicated in [7, Lemma 1], we may adjust f to obtain a map $f_1: D \rightarrow \operatorname{Cl}(\operatorname{Int} S)$ such that $f | \operatorname{Bd} D = f_1 | \operatorname{Bd} D, f_1(D) \subset N(f(D), \epsilon/3), J_1 \oplus f_1(D)$, and $J_{-1} \oplus f_1(D)$.

Step II. Since for -1 < r < 1, J_r is a tame simple closed curve, it follows from the techniques of [5] that there is a map $f_2: D \rightarrow Cl(Int S)$ such that $f_2|BD D = f_1|Bd$ this $D, f_2(D) \subset N(f_1(D), \epsilon/3), f_2(D) \cap S$ is 0-dimensional, and $J_r \cap f_2(D) = \emptyset$ if r is rational.

Step III. For -1 < t < 1 there is a $\delta_t > 0$ such that if J is homeomorphically within δ_t of J_t then each δ_t subset of J lies in an $\epsilon/18$ arc in J. Since $f_2(D) \cap S$ is compact and 0-dimensional, for each -1 < t < 1 there is a collection \mathfrak{C}_t of disjoint open sets in E^3 covering $f_2(D) \cap S$ such that if $A \in \mathfrak{C}_t$ then Diam $A < \delta_t$ and $A \cap f(\operatorname{Bd} D) = \emptyset$. Let λ_t be a positive number which is less than the distance between $f_2(D) - U\mathfrak{C}_t$. and J_t and which is less than $\epsilon/36$. By Lemma 1 there are rational numbers α_t and β_t and a homeomorphism $h_t: S^1 \times [\alpha_t, \beta_t] \rightarrow \text{Int } S$ such that

- (1) $-1 < \alpha_t < t < \beta_t < 1$,
- (2) $h_t(y \times [\alpha_t, \beta_t])$ is a vertical line segment for each $y \in S^1$,
- (3) $h_t(S^1 \times r)$ lies in the horizontal plane z = r for $r \in [\alpha_i, \beta_i]$,
- (4) $T(h_t)$ lies in an λ_t -neighborhood of J_t , and
- (5) $h_t(S^1 \times t)$ is homeomorphically within δ_t of J_t .

A finite number of the tori $\{T(h_t)\}$ (-1 < t < 1) suffice to cover $f_2(D) \cap S$. This finite collection of tori may be cut apart using horizontal planes z = r with r rational to obtain a new finite collection \mathbb{C} of disjoint tori which also cover $f_2(D) \cap S$. For each $T \in \mathbb{C}$ there exist a number t and rational numbers u and v such that $\alpha_t < u < v < \beta_t$ and $T = h_t(S^1 \times [u, v]) \cup A(h_t, u) \cup A(h_t, v) \cup S(u, v)$.

We next show that each component K of $f_2(D) \cap (T-S(u, v))$ is contained in the interior of an $\epsilon/3$ -disk in T-S(u, v). By (4) there is an open set in \mathbb{C}_t which contains K; consequently, Diam $K < \delta_t$. Let $K' = \{x \in h_t(S^1 \times t) | \text{ for some } y \in S^1, x = h_t(y \times t) \text{ and } K \cap h_t(y \times [u, v]) \neq \emptyset \}$. It follows that Diam $K' < \delta_t$ so there is an $\epsilon/18$ -arc B in $h_t(S^1 \times t)$ that contains K'. If $M = \{x \in S^1 | h_t(x \times t) \in B\}$ then the disk $E = \bigcup_{x \in M} h_t(x \times [u, v])$ is of diameter less than $\epsilon/9$ and contains $K \cap h_t(S^1 \times [u, v])$. Since Diam $K \cap \text{Int } A(h_t, u) < \delta_t < \epsilon/9$, $\delta_t < \text{Diam } h_t(S^1 \times u)$, and $A(h_t, u)$ lies in a horizontal plane, it follows that $K \cap \text{Int } A(h_t, u)$ does not separate J_u from $h_t(S^1 \times u)$ on $A(h_t, u)$ and consequently lies in an $\epsilon/9$ -subdisk E_u of $A(h_t, u) - J_u$. E_u may be chosen so that $E_u \cap E = \text{Bd } E_u \cap \text{Bd } E$ is an arc. Similarly, there is an $\epsilon/9$ -subdisk E_v of $A(h_t, v) - J_v$ that contains $K \cap A(h_t, v)$ so that $E_v \cap E = \text{Bd } E_v \cap \text{Bd } E$ is an arc. It follows that $E_u \cup E \cup E_v$ is an $\epsilon/3$ -subdisk of T - S(u, v) that contains K.

Using techniques of the topology of E^2 it now follows that $(T-S(u, v)) \cap f_2(D)$ is covered with a finite collection \mathfrak{D}_T of disjoint $\epsilon/3$ -disks in T-S(u, v). The collection $\mathfrak{D}=\bigcup_{T\in \mathfrak{E}} \mathfrak{D}_T$ is finite, disjoint, and such that $\bigcup_{F\in \mathfrak{D}} F$ separates $f_2(\operatorname{Bd} D)$ from $f_2(D) \cap S$ on $f_2(D)$. It follows from the Tietze Extension Theorem, as indicated in [7, Lemma 1], that there is a map $g: D \to \operatorname{Int} S$ such that $g | \operatorname{Bd} D = f_2 | \operatorname{Bd} D$ and $g(D) \subset N(f_2(D), \epsilon/3)$.

From Steps I, II, and III we have $f | \operatorname{Bd} D = f_1 | \operatorname{Bd} D = f_2 | \operatorname{Bd} D$ = $g | \operatorname{Bd} D$ and $g(D) \subset N(f(D), \epsilon)$.

That S is tame from Int S now follows from Lemma 2, Lemma 3 and Bing's 1-ULC characterization of tame surfaces. Similar techniques are employed to show that S is tame from Ext S. Thus we have proved the following theorem suggested by Alexander [1].

1969]

THEOREM. A 2-sphere S in E^3 is tame if each horizontal cross section of S is either a simple closed curve or a point.

The author has recently learned that Norman Hosay has also given a proof of this theorem.

References

1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.

2. R. H. Bing, Approximating surfaces from the side, Ann of Math. (2) 77 (1963), 145-192.

3. ——, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. **101** (1961), 294–305.

4. ——, Conditions under which a surface in E^{*} is tame, Fund. Math. 47 (1959), 105-139.

5. ——, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45.

6. ——, Spheres in E³, Amer. Math. Monthly 71 (1964), 353-364.

7. C. E. Burgess, Characterizations of tame surfaces in E³, Trans. Amer. Math. Soc. 114 (1965), 80-97.

8. C. D. Papakyriakojoulos, On Dehn's Lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26.

THE UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916