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An infinite real matrix satisfying the Toeplitz conditions will be 
called regular; a regular matrix is admissible if it is nonnegative, lower 
triangular, and each row sums to 1. 

Let T be a mapping of a Banach space X into itself. If * £ X and A 
is regular, let C(x,A,T) denote the sequence defined by un 

= ]C*-i a>nkTk~lx. If A is admissible, let M(x, A, T) denote the pair 
of sequences given by Xi=x, vn= XX» t ankXk, xn+i = Tvn. The state­
ment that M(x, Ay T) converges means that each of {xn\ and \vn} 
converges and lim xn = lim vn. Since A is regular, the convergence of 
{xn\ implies the convergence of M(x, A, T). 

For the identity matrix 7, each sequence of C(x, 7, T) and M(x> I , T) 
is just the ordinary sequence of iterates { Tn~lx}. 

Since A is a regular matrix, C(x, A, T) is regular, i.e., the conver­
gence of { Tnx\, say to z, implies the convergence of C(x, A, T) to z. 

THEOREM 1. If T is linear and A is admissible, then there is an ad-
missible B such that \xn] of M(x, A, T) is {un\ of C(x, B, T). Hence 
M(x, A, T) is regular f or linear T. 

OUTLINE OF PROOF. T O define B, first define, for each pair (J, u) of 
positive integers, Eo(u) =auï and Ej(u) = ]QL2 aukEj-i{k — \) (we use 
the convention that *5L%~myk = Q if m>n). Now let B be given by 
&11 = 1, &m+l,l = &l ,n+ l=0 , bm+i,n+i = En-l(m). 

The proof follows easily once the following results are established. 
(1) If m^n^l then èm+i,n+1= J^ml amjbjn. 
(2) If n>m t h e n £ n _ i ( m ) = 0 . 
(3) If m^2 then j ^ t

l &m + w= ^ - i <wZ,*-i &*/• 
(4) If r^2 then xr= X X 2 E w ( r - l ) r * " l x . 
Among the theorems proved by Mann [4] when he introduced 

M(x, A, T) were: 
(a) If T is continuous and either sequence of M(x, A, T) converges, 

then the other does, and their common limit is a fixed point of T. 
(b) Let L be the admissible matrix whose nonzero entries in the 

wth row are all equal to l/n. If T is a continuous function from [a, b] 
into itself with a unique fixed point p, then M(x, L, T) converges to 
p, for any x in [a, b]. 

I t is easy to show that the analog of (b) for C(x, L, T) does not 
hold. 
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Caldwell [ l ] has given the following example: Let E be the closed 
disc with radius 2 centered at 0 in the complex plane, suppose that 
0 < < £ < 7 T / 4 , and let F be the nonlinear function defined on E by 
F(rei$) = (2r — r2)eii9+*\ For each nonzero x in E, M(x, L, F) does not 
converge, but if \x\ = 2 then {Fnx) converges to the unique fixed 
point 0. Hence M(x, A, T) may not be regular if T is nonlinear. Fur­
ther, it may be shown that for any x in £ , C(x, L, F) converges to 0. 

To give a partial generalization of (b), we first define a segmenting 
matrix to be an admissible matrix A such that for each n, and for 
fcgn, aw+i,* = (l--an-fi,n+i)ön*. For such a matrix, vn+x lies on the line 
segment joining vn and xn+i = Tvn: 

U„+l = ( 1 — 0 n + i , n + i ) 7>n + Cln+ltn+lTvn. 

Lisa segmenting matrix. 

THEOREM 2. Let E be a convex compact subset of the complex plane, 
let T be a nonexpansive mapping of E into itself (j Tx— Ty\ g | x—y\ 
for all x and y in E) with a unique fixed point p, and let A be a segment­
ing matrix such that 2n°-i ^„„(1 — a„„) diverges. If xCLE then M(x, A, T) 
converges to p. 

OUTLINE OF PROOF. I t is not difficult to modify the problem so that 
£ = 0. Then {\vn\ } is nonincreasing; suppose that 6 = lim |z>n| > 0 . 

Since E is compact and {vn\ does not converge to 0, 0 is not a 
cluster value of \vn— tfn+i}. For each n, Vn^Xn+i* Thus there is a d 
such that 0<d<b and \vn—#n+i| *^d for each n. 

Using the fact that for any three complex numbers x, y, and z, if 
*^0,Z5*0, \x-y\ = | y - s | , a n d i f / i s i n [0, l ] , t hen | tx + (l-t)z-y\2 

= |y — z\2 — /(l — t)\z—x\2, we show that for each n,|fl»+i|2 

g | vn\
2—an+i,n+i(l —a>n+i,n+i)d2. Hence, by induction, for each w, 

n+1 

|t>n+i |2 â \vi |2 — d2 2 akk(l — a**)-

This yields a contradiction since ^ * « j anw(l —ann) diverges. 
Except for Theorem 6 below, suppose that T is nonexpansive and 

that X is uniformly convex. In this setting, G. Birkhoff s mean ergo-
dic theorem says that if T is linear, then for each x, C(x, L, T) (that 
is, the sequence {(1/n) X X i Tk~lx}) converges to a fixed point of T. 
Let P denote the segmenting matrix such that pn+i,n+i = J for each n. 

CONJECTURE. If T is linear then M(x, P, T) converges. (Here, 

n+i / n \ 
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THEOREM 3. The conjecture holds if X is finite dimensional. 

This theorem is really a corollary of the following results, which do 
not require finite dimensionality. The first lemma may be obtained 
as a corollary of a result of Browder and Petryshyn [2]. 

LEMMA 4-1. For the process M(x, P,T),ifT is linear, then {vn—xn+i} 
has limit 0. 

LEMMA 4-2. If T is linear and if {vn} has a cluster value, then 
M(x, P, T) converges. 

THEOREM 4. If T is linear and demicompact ({un} bounded and 
{un — Tun} convergent imply that {un} has a convergent subsequence), 
then M(x, P, T) converges. 

COROLLARY. If T is linear and compact then M(x, P, T) converges. 

If 0 < X < 1 and ƒ eX, let Vx=\I+(l-X)(T+f). 
We obtain corollaries for the iteration process { V%x} of theorems 

given by Browder and Petryshyn [2], [3]. 

THEOREM 5. If f (EX then a solution ofu = Tu + ƒ exists if and only if, 
for each x, { V£x} is bounded. 

THEOREM 6. If T is a bounded linear mapping of a Banach space into 
itself which is asymptotically convergent (for each x, { Tnx} converges) 
and if f is in the range of I—T, then { V^x} converges to a solution of 
u = Tu+f. 

There are elementary examples of bounded linear mappings which 
are not asymptotically convergent and for which { V"x} converges, 
but the process given by (/>o = x, <£n+i = T<f>n+f does not converge. 
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