AVERAGING ITERATION IN A BANACH SPACE

BY CURTIS OUTLAW AND C. W. GROETSCH

Communicated by J. B. Diaz, October 10, 1968

An infinite real matrix satisfying the Toeplitz conditions will be called regular; a regular matrix is admissible if it is nonnegative, lower triangular, and each row sums to 1.

Let T be a mapping of a Banach space X into itself. If $x \in X$ and A is regular, let C(x,A,T) denote the sequence defined by u_n $=\sum_{k=1}^{\infty} a_{nk} T^{k-1} x$. If A is admissible, let M(x, A, T) denote the pair of sequences given by $x_1 = x$, $v_n = \sum_{k=1}^n a_{nk} x_k$, $x_{n+1} = Tv_n$. The statement that M(x, A, T) converges means that each of $\{x_n\}$ and $\{v_n\}$ converges and $\lim x_n = \lim v_n$. Since A is regular, the convergence of $\{x_n\}$ implies the convergence of M(x, A, T).

For the identity matrix I, each sequence of C(x, I, T) and M(x, I, T)is just the ordinary sequence of iterates $\{T^{n-1}x\}$.

Since A is a regular matrix, C(x, A, T) is regular, i.e., the convergence of $\{T^nx\}$, say to z, implies the convergence of C(x, A, T) to z.

THEOREM 1. If T is linear and A is admissible, then there is an admissible B such that $\{x_n\}$ of M(x, A, T) is $\{u_n\}$ of C(x, B, T). Hence M(x, A, T) is regular for linear T.

OUTLINE OF PROOF. To define B, first define, for each pair (j, u) of positive integers, $E_0(u) = a_{u1}$ and $E_j(u) = \sum_{k=2}^u a_{uk} E_{j-1}(k-1)$ (we use the convention that $\sum_{k=m}^n y_k = 0$ if m > n). Now let B be given by $b_{11}=1$, $b_{m+1,1}=b_{1,n+1}=0$, $b_{m+1,n+1}=E_{n-1}(m)$.

The proof follows easily once the following results are established.

- (1) If $m \ge n \ge 1$ then $b_{m+1,n+1} = \sum_{j=1}^m a_{mj}b_{jn}$.
- (2) If n > m then $E_{n-1}(m) = 0$. (3) If $m \ge 2$ then $\sum_{j=1}^{m+1} b_{m+1,j} = \sum_{k=1}^{m} a_{mk} \sum_{j=1}^{k} b_{kj}$.
- (4) If $r \ge 2$ then $x_r = \sum_{k=2}^r E_{k-2}(r-1) T^{k-1} x$.

Among the theorems proved by Mann [4] when he introduced M(x, A, T) were:

- (a) If T is continuous and either sequence of M(x, A, T) converges, then the other does, and their common limit is a fixed point of T.
- (b) Let L be the admissible matrix whose nonzero entries in the nth row are all equal to 1/n. If T is a continuous function from [a, b]into itself with a unique fixed point p, then M(x, L, T) converges to p, for any x in |a, b|.

It is easy to show that the analog of (b) for C(x, L, T) does not hold.

Caldwell [1] has given the following example: Let E be the closed disc with radius 2 centered at 0 in the complex plane, suppose that $0 < \phi < \pi/4$, and let F be the nonlinear function defined on E by $F(re^{i\theta}) = (2r-r^2)e^{i(\theta+\phi)}$. For each nonzero x in E, M(x, L, F) does not converge, but if |x| = 2 then $\{F^nx\}$ converges to the unique fixed point 0. Hence M(x, A, T) may not be regular if T is nonlinear. Further, it may be shown that for any x in E, C(x, L, F) converges to 0.

To give a partial generalization of (b), we first define a segmenting matrix to be an admissible matrix A such that for each n, and for $k \le n$, $a_{n+1,k} = (1 - a_{n+1,n+1})a_{nk}$. For such a matrix, v_{n+1} lies on the line segment joining v_n and $x_{n+1} = Tv_n$:

$$v_{n+1} = (1 - a_{n+1,n+1})v_n + a_{n+1,n+1}Tv_n.$$

L is a segmenting matrix.

THEOREM 2. Let E be a convex compact subset of the complex plane, let T be a nonexpansive mapping of E into itself $(|Tx-Ty| \le |x-y|)$ for all x and y in E) with a unique fixed point p, and let A be a segmenting matrix such that $\sum_{n=1}^{\infty} a_{nn}(1-a_{nn})$ diverges. If $x \in E$ then M(x, A, T) converges to p.

OUTLINE OF PROOF. It is not difficult to modify the problem so that p=0. Then $\{|v_n|\}$ is nonincreasing; suppose that $b=\lim |v_n|>0$.

Since E is compact and $\{v_n\}$ does not converge to 0, 0 is not a cluster value of $\{v_n-x_{n+1}\}$. For each n, $v_n\neq x_{n+1}$. Thus there is a d such that 0 < d < b and $|v_n-x_{n+1}| \ge d$ for each n.

Using the fact that for any three complex numbers x, y, and z, if $x \neq 0$, $z \neq 0$, |x-y| = |y-z|, and if t is in [0,1], then $|tx+(1-t)z-y|^2 = |y-z|^2 - t(1-t)|z-x|^2$, we show that for each n, $|v_{n+1}|^2 \le |v_n|^2 - a_{n+1,n+1}(1-a_{n+1,n+1})d^2$. Hence, by induction, for each n,

$$|v_{n+1}|^2 \leq |v_1|^2 - d^2 \sum_{k=2}^{n+1} a_{kk} (1 - a_{kk}).$$

This yields a contradiction since $\sum_{n=1}^{\infty} a_{nn}(1-a_{nn})$ diverges.

Except for Theorem 6 below, suppose that T is nonexpansive and that X is uniformly convex. In this setting, G. Birkhoff's mean ergodic theorem says that if T is linear, then for each x, C(x, L, T) (that is, the sequence $\{(1/n)\sum_{k=1}^{n}T^{k-1}x\}$) converges to a fixed point of T. Let P denote the segmenting matrix such that $p_{n+1,n+1} = \frac{1}{2}$ for each n.

Conjecture. If T is linear then M(x, P, T) converges. (Here,

$$v_{n+1} = 1/2^n \sum_{k=1}^{n+1} \binom{n}{k-1} T^{k-1} x.$$

THEOREM 3. The conjecture holds if X is finite dimensional.

This theorem is really a corollary of the following results, which do not require finite dimensionality. The first lemma may be obtained as a corollary of a result of Browder and Petryshyn [2].

LEMMA 4-1. For the process M(x, P, T), if T is linear, then $\{v_n - x_{n+1}\}$ has limit 0.

LEMMA 4-2. If T is linear and if $\{v_n\}$ has a cluster value, then M(x, P, T) converges.

THEOREM 4. If T is linear and demicompact ($\{u_n\}$ bounded and $\{u_n-Tu_n\}$ convergent imply that $\{u_n\}$ has a convergent subsequence), then M(x, P, T) converges.

COROLLARY. If T is linear and compact then M(x, P, T) converges.

If $0 < \lambda < 1$ and $f \in X$, let $V_{\lambda} = \lambda I + (1 - \lambda)(T + f)$.

We obtain corollaries for the iteration process $\{V_{\lambda}^{n}x\}$ of theorems given by Browder and Petryshyn [2], [3].

THEOREM 5. If $f \in X$ then a solution of u = Tu + f exists if and only if, for each x, $\{V_{\lambda}^n x\}$ is bounded.

THEOREM 6. If T is a bounded linear mapping of a Banach space into itself which is asymptotically convergent (for each x, $\{T^nx\}$ converges) and if f is in the range of I-T, then $\{V_{\lambda}^nx\}$ converges to a solution of u=Tu+f.

There are elementary examples of bounded linear mappings which are not asymptotically convergent and for which $\{V_{\lambda}^n x\}$ converges, but the process given by $\phi_0 = x$, $\phi_{n+1} = T\phi_n + f$ does not converge.

REFERENCES

- 1. G. C. Caldwell, Ph.D. Thesis, University of North Carolina, Chapel Hill, 1956.
- 2. F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575.
- 3. ——, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566-570.
- 4. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

LOUISIANA STATE UNIVERSITY IN NEW ORLEANS, LAKE FRONT, NEW ORLEANS, LOUISIANA 70122