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1. Introduction. Functions of bounded variation on [a, b] are those 
functions for which 

(1) Vlif) « Sup V(f9 P) = Sup £ | A/y | 
p P y-i 

is finite. An important theorem about the set BV[a, b] of all such 
functions says that this set may be characterized as the set of all 
functions representable as the difference of two nondecreasing func­
tions. Stated with less precision but more suggestion for our purposes, 
BV\a, b] is the set of all functions representable as the difference of 
two functions with nonnegative first derivatives. I t is then natural 
to consider the set of all functions representable as the difference of 
two functions with nonnegative second derivatives (convex functions, 
roughly speaking). 

We begin our study with an expression that plays the role of 
(1). For a partition P= {a = Xi<X2< • • • <xn = b}t let Q/y 

- [ f ( * i ) - / ( * w ) / ( * y - * y - i ) ] . 
DEFINITION 1. F o r / : [a, b]—>R, let 

(2) K\U) - SupK(f,P) - Sup g | Dfm - DfA . 
p P i - i 

1 The second author was supported by the National Science Foundation under 
grant number GP-7843. 
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If K1(f) < 00, we say ƒ is of bounded convexity on [a, b](fÇzBC[a, b]) 
and we call K\(f) the total convexity of/on [a, b]. 

This definition gives rise to a host of interesting consequences which 
we outline below. Full proofs of the indicated results will appear 
elsewhere. 

2. The basic theory. 

THEOREM 1. If Kb
a(f)< 00, then f+(x) exists on [a, b) and fL(x) 

exists on (a, b]. Moreover, both onesided derivatives are bounded on the 
domains where they exist. 

From Theorem 1 it follows that functions of bounded convexity 
are continuous, have finite derivatives except for at most countably 
many points and are absolutely continuous [6, Theorem 4]. And 
once guaranteed the existence of left and right derivatives, we may 
prove 

THEOREM 2. Let a<c<b. Then K*a(f) < 00 if and only if Ke
a(f) and 

Kh
e{f) are finite, and in this case 

K\{f) - Klif) + Klif) + I fiic) -f-ic) I . 

For a function ƒ convex on [a, 6], (2) becomes ƒ+(a)—ƒ!(&), so 
K(f)<co if and only if both f'+(a) and ƒ!(&) are finite. For this 
reason, we cannot expect to identify BC[a, b] with the collection of 
functions representable as the difference of any two convex functions. 
But by restricting attention to convex functions of bounded con­
vexity, we can obtain the anticipated characterization of BC[a, b]. 
Toward this end, for fÇzBC[a9 b], we define the following functions. 

t(x) = K*a(f) with t(a) = 0. 

f*(x) - fL(x) for x G (a, b] and f*(a) = jf+(a). 

p(x) - }[/(*) + ƒ*(*) - f*(a)); P(x) - ƒ *p(u)du. 

n(x) - |[t(s) -ƒ*(*) +y*(a)]; #(*) - ƒ #n(n)ite. 

The key is to demonstrate that both p and n are nondecreasing func­
tions, since it then follows that P and N are convex. The desired 
representation comes from the fact that the (absolutely continuous) 
function ƒ may be written as 
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/M -f(a) -/+(*)(* - a) - ƒ V ( « ) - f+(o)]du 

« f {p(u) - n(u)]du « P(x) - N(x). 

THEOREM 3. If Klif) < oo, then 

f(x) = Pix) - Nix) + [f+ia)ix - a) +f(a)] 

and Klif) =Kb
aiP) +Kb

aiN) = Vb
a(f*), where Vb

aif*) is the total variation 
off* on [a,b]. 

The bracketed term, being linear, can be combined with either P 
or N to give a representation of ƒ as the difference of two convex func­
tions in BC[a, b]. The surprising relation to Vaif*) gives several in­
teresting corollaries, of which we here include just one. 

COROLLARY. If ƒ is twice differ entiable with fn integrable on [a, b], 
then Kb

a(f) < °° and 

Klif)- fb\f"(u)\du. 

3. The space BC[a, b] and related spaces. It is easy to see that 
BC[a, b] is a normed linear space with norm 

M\ = Kl(f)+\/+(a)\ +\f(a)\. 

The subspace consisting of those functions ƒ for which ƒ{. (a) = ƒ (a) = 0 
will be denoted by BCN[a, b]. Two related spaces are of interest. The 
functions of bounded variation, 2?F[a,ô], normed by | | |g | | | 
= ^o(g) + |g(#)| &re known [5, p. 103] to form a Banach Space. The 
subspace of functions g which are left continuous on iafb], right con­
tinuous at a, and which satisfy gia) = 0 will be denoted by B VN [a, b ]. 
A fact crucial to our development here is that B VN [a, b ] with the 
norm ||| ||| is also a Banach Space. After proving this, we are able 
to prove, using/* as defined above, 

THEOREM 4. BCN[a, b] is congruent {isometrically isomorphic) to 
BVN[a, b] under the correspondence f+-*f*m Therefore, BCN[a, b] is a 
Banach Space. 

As to the space BC[a, b] itself, we need to introduce the space 
RXRXBVN[a, b] normed by ||(«, 0, g)\\ - Jorj +|j8| + V*(g). This 



1969] FUNCTIONS OF BOUNDED CONVEXITY 571 

product of Banach Spaces is again a Banach Space, so Theorem 5 
settles the question of completeness for BC[a, b]. 

THEOREM 5. BC[af b] is congruent to RXRXBVN[a, b]. 

The space BVN[at b] is congruent to NBV(a, b) of Dunford and 
Schwartz [l, pp. 241, 342-344, 378]. Hence, Theorem 5 enables us 
to answer for BC[a, b] many of the questions usually asked about 
Banach Spaces. 

4. Vector valued functions. For a vector valued function, the 
obvious generalization of (2) is 

^w-sup2||n//fi-D/il|. 
p y- i 

If f(t) = (/i(0, • • • , fm(t)), then the inequality 

\vi\ 2g||(in, * „ • • • , !Ü|| ^ | n I + • • • + \vm\ 

can be used to establish the not surprising 

THEOREM 6. K\(J) <<*> if and only if Kl(f%) < 00 for i = 1, • • • , m. 

The concepts of differentiability, bounded variation, and absolute 
continuity for /are closely related to these concepts for the coordinate 
functions [4, p. 382ff], so Theorem 6 has all the expected straight­
forward consequences of §2. One of these results relates our work to 
that of classical differential geometry. The analog of the corollary to 
Theorem 3 is 

COROLLARY. If f is twice differentiable with i" integrable on [a, ft], 
then 

(3) *!( / ) - fV'(0||*. 
Now in the case where / is the parameterization of a curve C with 

respect to arc length s, \\f"(s)\\ is equal to the curvature K(S) of the 
curve, and (3) is what is known in the literature [2, p. 252], [3, p. 204] 
as the total or integral curvature of C. 

It should be emphasized that for a given curve C, (3) will be the 
total curvature of C in general only if ƒ is the representation of C with 
respect to arc length. We are able to show by example that for differ­
ent representations of the same curve, one may obtain any positive 
value including + 00 from (3). However, there is a formula for ob­
taining the total curvature of a curve C directly from an arbitrary 
representation /. 



572 A. W. ROBERTS AND D. E. VARBERG 

Many of the ideas which we have discussed also have generaliza­
tions for functions/: Rm-^R. We shall not take space to discuss them 
heie. 
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