- 3. W. Sierpinski, General topology, Univ. of Toronto Press, Ontario, 1952, p. 250.
- 4. ——, Cardinal and ordinal numbers, PWN, Warsaw, 1958, p. 376.
- 5. S. M. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140.
 - 6. ----, Problèmes No. 74, Fund. Math. 30 (1938), 365.
- 7. ——, A collection of mathematical problems, Interscience, New York, 1960, p. 9.

INDIAN STATISTICAL INSTITUTE, CALCUTTA, INDIA

ON SPHERE-BUNDLES. I

BY I. M. JAMES1

Communicated by P. E. Thomas, November 19, 1968

Let E be an (n-1)-sphere bundle over a base space B, with the orthogonal group as structural group. By an almost-complex structure on E we mean a reduction of the structural group to the unitary group. By an A-structure on E I mean a fibre-preserving map $f: E \rightarrow E$ such that fx is orthogonal to x for all $x \in E$. For example, an almost-complex structure determines such a map through the action² of the scalar I such that $I^2 = -1$. Note that I must be even if an I-structure exists. When I is trivial this necessary condition is also sufficient.

I describe E as homotopy-symmetric if $1 \cong u : E \to E$, by a fibre-preserving homotopy, where u denotes the antipodal map given by ux = -x. This condition also implies that n is even. An A-structure f on E determines a fibre-preserving homotopy f_t ($t \in I = [0, 1]$), where $f_t x = x \cos \pi t + f(x) \sin \pi t$, and so E is homotopy-symmetric. I assert that the converse holds in the stable range, $f_t = x + f(x) +$

THEOREM 1. Let B be a finite complex such that dim $B \le n-4$. Then E admits an A-structure if and only if E is homotopy-symmetric.

A proof can be given as follows. Let $p: E \rightarrow B$ denote the fibration. Let E' denote the space of pairs (x, y), where $x, y \in E$, such that px = py and such that x is orthogonal to y. We fibre E' over E with projection p' given by p'(x, y) = x. An A-structure f on E determines a cross-section $f': E \rightarrow E'$, where f'x = (x, fx), and conversely a cross-section determines an A-structure. Let E'' denote the space of paths λ in E such that $p\lambda$ is stationary in B and such that $\lambda(0) = \lambda(1)$. We

¹ Research partly supported by the National Science Foundation.

² We recall that the centre of the structural group acts on the bundle.

³ The stable range, in relation to this problem, is not quite as extensive as the stable range of ordinary theory.

fibre E'' over E with projection p'' given by $p''\lambda = \lambda(0)$. Then p''h = p', where $h: E' \rightarrow E''$ is the map defined by

$$h(x, y)(t) = x \cos \pi t + y \sin \pi t \qquad (t \in I).$$

A fibre-homotopy f_t of 1 into u determines a cross-section $f'': E \rightarrow E''$, where $f''(x)(t) = f_t(x)$, and conversely.

Consider the fibre S^{n-1} of the original fibration $p: E \to B$ which contains the basepoint $e \in E$. The fibre of $p': E' \to E$ over e can be identified with S^{n-2} , the equator orthogonal to e. The corresponding fibre of $p'': E'' \to E$ can be identified with $\Omega(S^{n-1})$, the space of paths in S^{n-1} from e to -e, so that h maps $x \in S^{n-2}$ into the great semicircle through x. It follows that the Freudenthal suspension can be expressed as the composition

$$\pi_r(S^{n-2}) \xrightarrow[h_{\bigstar}]{} \pi_r(\Omega(S^{n-1})) \xrightarrow[\theta]{} \pi_{r+1}(S^{n-1}),$$

where θ denotes the Hurewicz isomorphism. Therefore h_* is injective for $r \le 2n-5$ and surjective for $r \le 2n-5$. However

$$\dim E = n - 1 + \dim B \le 2n - 5,$$

by hypothesis, and so the coefficient homomorphism

$$H^{i}(E, \pi_{j}(S^{n-2})) \rightarrow H^{i}(E, \pi_{j}(\Omega(S^{n-1}))),$$

induced by h_* is injective for j < i, surjective for $j \le i$. Hence it follows by obstruction theory, as in [2], that $p': E' \rightarrow E$ admits a cross-section if $p'': E'' \rightarrow E$ does so. This proves Theorem 1.

Now consider the (reduced) Grothendieck group $\tilde{K}_R(B)$ formed from real vector bundles over B. If E is a sphere-bundle over B we denote by [E] the class in $\tilde{K}_R(B)$ of the associated euclidean bundle. I say that an element $x \in \tilde{K}_R(B)$ is of A-type if x = [E] where E is a sphere-bundle which admits A-structure. By an argument similar to that used to prove Theorem 1 we obtain

THEOREM 2. Let B be a finite-dimensional complex. Let E be an (n-1)-sphere bundle over B where n is even and dim $B \le n-4$. Then E admits A-structure if [E] is of A-type.

From this it is not difficult to show that the elements of A-type in $\tilde{K}_R(B)$ form a subgroup. Our main result is a determination of this subgroup as follows. Let

$$T: K_R(B) \to K_R(SB)$$

denote the homomorphism given by taking the tensor product with the class of the canonical line bundle over the real projective line. Let J have its standard meaning, as in [1], for example. Then we have

THEOREM 3. An element $x \in \tilde{K}_R(B)$ is of A-type if and only if JT(x) = 0.

It is well known⁴ that the kernel of T coincides with the image of the homomorphism

$$\tilde{K}_{\mathcal{C}}(B) \to \tilde{K}_{\mathcal{R}}(B)$$

given by taking the underlying real vector bundle. It follows that T(x) = 0 if and only if x = [E], where E is a sphere-bundle which admits almost-complex structure. It turns out, after a little calculation, that T and JT have the same kernel when B is a sphere or one of the ordinary projective spaces. However, the kernels are different when B is the Cayley projective plane, and so there exists a stable bundle over this 16-dimensional manifold which admits an A-structure but not an almost-complex structure.

Outside the stable range there are some fragmentary results. For example it is shown by G. Whitehead [5] that the tangent sphere-bundle to S^n admits an A-structure if and only if n=2 or 6. I do not know of any manifold where the tangent bundle admits an A-structure but not an almost-complex structure.

An A-structure f determined by an almost-complex structure has the properties that (i) uf = fu, and (ii) $f^2 = u$, where u denotes the antipodal map as before. It might be interesting to study conditions for the existence of A-structures with one or both of these properties.

The following is an indication of the proof of Theorem 3. We represent points on the circle S by complex numbers of unit modulus. Let $p: E \rightarrow B$ be as before. Consider the space \tilde{E} formed from $E \times S$ by identifying (x, z) with (-x, -z) for all $x \in E$, $z \in S$. We fibre \tilde{E} over $B \times S$ with projection \tilde{p} given by $\tilde{p}(x, z) = (px, z^2)$. The sphere-bundle structure is completed in the obvious way. The vector bundle associated with \tilde{E} is the tensor product of the vector bundle associated with E and the canonical line bundle over S.

Let S_+ denote the upper semicircle of S. Suppose that E is homotopy-symmetric. Then there exists a map $g: E \times S_+ \to E$ such that p(x, z) = px for all $x \in E$, $z \in S_+$, and such that

$$g(x, 1) = x = g(-x, -1).$$

We extend g to a map $h: E \times S \rightarrow E$ so that h(x, z) = h(-x, -z), for all $x \in E$, $z \in S$. Then $pk = l\tilde{p}$, where $k: \tilde{E} \rightarrow E$ is induced by h and

⁴ I understand this version of a result of Bott's can be found in D. W. Anderson's unpublished thesis. An independent proof by R. Wood is also unpublished.

 $l: B \times S \rightarrow B$ is the left projection. Since k maps one of the fibres of \tilde{E} homeomorphically onto the corresponding fibre of E it follows that \tilde{E} is fibre-homotopically equivalent to $l^*(E)$. In terms of K-theory this implies that T([E]) lies in the kernel of J. When E is a stable bundle the essential steps of this argument are reversible and so, after using Theorem 1, we arrive at Theorem 3 as asserted. Full details are given in [3].

These results can be extended to (right) vector bundles over F, where F denotes the field of real numbers, complex numbers or quaternions. Vector spaces over F are endowed with the usual inner product (see §20 of [4], for example) so that orthogonality is defined. Let E be a sphere-bundle over B with structural group the orthogonal group in the real case, the unitary group in the complex case, the symplectic group in the quaternionic case. By an A-structure on E I mean a fibre-preserving map $f: E \rightarrow E$ such that fx is orthogonal to x, in the appropriate sense, for all $x \in E$. Let D denote the unit ball consisting of elements $z \in F$ such that $|z| \leq 1$, and let S denote the unit sphere, where |z| = 1. I describe E as homotopy-symmetric if there exists a map $h: E \times D \rightarrow E$ such that

- (i) ph(x, z) = px $(x \in E, z \in D)$,
- (ii) $h(x, z) = x \cdot z$ $(x \in E, z \in S)$.

By arguments similar to those used in the real case it can be shown that the existence of an A-structure implies homotopy-symmetry, and that the converse holds when B satisfies similar conditions to those in Theorem 1.

The notion of A-type is extended to $\widetilde{K}_{F}(B)$, in the obvious way. There is no difficulty in generalizing Theorem 2. The generalization of Theorem 3 asserts that the elements of A-type coincide with the kernel of JT, where

$$T: \tilde{K}_{\mathbb{F}}(B) \to \tilde{K}_{\mathbb{R}}(B \wedge P_{\mathbb{F}}(1))$$

is defined by taking the tensor product with the canonical left line bundle⁵ over $P_F(1)$, the left projective line. Details are given in [3]. We describe an A-structure $f: E \rightarrow E$ as equivariant if

$$f(xz) = f(x) \cdot z$$
 $(x \in E, z \in S).$

Consider the case when B is a point-space and $E = S_n$, the unit sphere in the n-dimensional vector space over F. An A-structure f on S_n determines a nonsingular vector field, by taking the tangent at x to the great circle through fx. If f is equivariant we obtain an induced

⁵ As defined in §4 of [1].

nonsingular vector field on the left (n-1)-dimensional projective space S_n/S . Since complex and quaternionic projective spaces have nonzero Euler number it follows that equivariant A-structures cannot exist unless F is real.

REFERENCES

- 1. M. F. Atiyah, *Thom complexes*, Proc. London Math. Soc. (3) 11 (1961), 291-310
- 2. W. D. Barcus, Note on cross-sections over CW-complexes, Quart. J. Math. Oxford (2) 5 (1954), 150-160.
 - 3. I. M. James, Bundles with special structure. I, Ann. of Math. (to appear).
- 4. N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- 5. G. W. Whitehead, Note on cross-sections in Stiefel manifolds, Comment. Math. Helv. 37 (1963), 239-240.

OXFORD UNIVERSITY, OXFORD, ENGLAND