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Let E be an (n—1)-sphere bundle over a base space B, with the
orthogonal group as structural group. By an almost-complex structure
on E we mean a reduction of the structural group to the unitary
group. By an A-structure on E I mean a fibre-preserving map f: E—E
such that fx is orthogonal to x for all x € E. For example, an almost-
complex structure determines such a map through the action? of the
scalar J such that J?= —1. Note that » must be even if an 4-struc-
ture exists. When E is trivial this necessary condition is also sufficient.

I describe E as homotopy-symmetric if 1=2u: E—E, by a fibre-
preserving homotopy, where # denotes the antipodal map given by
ux = —x. This condition also implies that # is even. An A-structure
f on E determines a fibre-preserving homotopy f: (€I= [0, 1]),
where fix =x cos wt-+f(x) sin 7, and so E is homotopy-symmetric. I
assert that the converse holds in the stable range,® so that we have

THEOREM 1. Let B be a finite complex such that dim B=<n—4. Then
E admits an A-structure if and only if E is homotopy-symmelric.

A proof can be given as follows. Let $: E—B denote the fibration.
Let E’ denote the space of pairs (x, y), where x, yEE, such that
px=py and such that x is orthogonal to y. We fibre E’ over E with
projection p’ given by p’(x, y) =x. An A-structure f on E determines
a cross-section f': E—E’, where f'x = (x, fx), and conversely a cross-
section determines an A-structure. Let E” denote the space of paths
A in E such that p\ is stationary in B and such that A(0) =A(1). We

1 Research partly supported by the National Science Foundation.

? We recall that the centre of the structural group acts on the bundle.

3 The stable range, in relation to this problem, is not quite as extensive as the
stable range of ordinary theory.
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fibre E” over E with projection p’’ given by p"’A=X\(0). Then p"’h =7/,
where h: E’—E’’ is the map defined by

h(x, ¥)(#) = x cos xt + vy sin =t gern.

A fibre-homotopy f; of 1 into # determines a cross-section f’’: E—E",
where "’ (x) () =f.(x), and conversely.

Consider the fibre S*! of the original fibration p: E—~B which
contains the basepoint e E. The fibre of p’: E'—E over e can be
identified with S»—%, the equator orthogonal to e. The corresponding
fibre of p'’: E'’—E can be identified with @(S"-1), the space of paths
in S*! from e to —e, so that & maps x&.S"2 into the great semicircle
through x. It follows that the Freudenthal suspension can be ex-
pressed as the composition

x(S™2) _h: 7(2(S*Y)) 7 w1 (S™7Y),

where 0 denotes the Hurewicz isomorphism. Therefore %, is injective
for r <2n—5 and surjective for » <2n—5. However

dmE=n—-14+dimB=2n— 5,

by hypothesis, and so the coefficient homomorphism
HY(E, mi(S™%) — HY(E, =;(2(S*)), *

induced by k4 is injective for j <1, surjective for j<14. Hence it follows
by obstruction theory, asin [2], that p’: E’—E admits a cross-section
if p”’: E""—E does so. This proves Theorem 1.

Now consider the (reduced) Grothendieck group Kg(B) formed
from real vector bundles over B. If E is a sphere-bundle over B we
denote by [E] the class in Kz(B) of the associated euclidean bundle.
I say that an element x& Kz(B) is of A-type if x=[E] where E isa
sphere-bundle which admits 4-structure. By an argument similar to
that used to prove Theorem 1 we obtain

THEOREM 2. Let B be a finite-dimensional complex. Let E be an
(n—1)-sphere bundle over B where n is even and dim B=<n—4. Then E
admits A-structure if [E] is of A-type.

From this it is not difficult to show that the elements of A-type in
Kr(B) form a subgroup. Our main result is a determination of this
subgroup as follows. Let

T: K}z(B) - KR(SB)

denote the homomorphism given by taking the tensor product with
the class of the canonical line bundle over the real projective line.
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Let J have its standard meaning, as in [1], for example. Then we have

THEOREM 3. An element xS Kr(B) is of A-type if and only if
JT(x)=0.

It is well known* that the kernel of T coincides with the image of
the homomorphism
I?c(B) - K~R(B)

given by taking the underlying real vector bundle. It follows that
T'(x) =0 if and only if x= [E], where E is a sphere-bundle which ad-
mits almost-complex structure. It turns out, after a little calculation,
that T and JT have the same kernel when B is a sphere or one of the
ordinary projective spaces. However, the kernels are different when
B is the Cayley projective plane, and so there exists a stable bundle
over this 16-dimensional manifold which admits an A-structure but
not an almost-complex structure.

Outside the stable range there are some fragmentary results. For
example it is shown by G. Whitehead [5] that the tangent sphere-
bundle to S* admits an A-structure if and only if #=2 or 6. I do not
know of any manifold where the tangent bundle admits an A4-struc-
ture but not an almost-complex structure.

An A-structure f determined by an almost-complex structure has
the properties that (i) #f=fu, and (ii) f2=u, where » denotes the
antipodal map as before. It might be interesting to study conditions
for the existence of A-structures with one or both of these properties.

The following is an indication of the proof of Theorem 3. We repre-
sent points on the circle S by complex numbers of unit modulus. Let
p: E—B be as before. Consider the space E formed from E XS by
identifying (x, 2) with (—x, —3) for all x€E, 3ES. We fibre £ over
B X.S with projection $ given by $(x, 2) = (px, 22). The sphere-bundle
structure is completed in the obvious way. The vector bundle asso-
ciated with £ is the tensor product of the vector bundle associated
with E and the canonical line bundle over S.

Let .S, denote the upper semicircle of S. Suppose that E is homo-
topy-symmetric. Then there exists a map g: EXS;—E such that
p(x, 2) =px for all xEE, 2E€S,, and such that

g 1) = x = g(—=, —1).

We extend g to a map h: EXS—E so that k(x, 2) =h(—x, —3), for
all xEE, s€S. Then pk=1p, where k: E—E is induced by & and

4 I understand this version of a result of Bott’s can be found in D. W. Anderson’s
unpublished thesis. An independent proof by R. Wood is also unpublished.
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I: BX.S—B is the left projection. Since k£ maps one of the fibres of £
homeomorphically onto the corresponding fibre of E it follows that
E is fibre-homotopically equivalent to *(E). In terms of K-theory
this implies that T([E]) lies in the kernel of J. When E is a stable
bundle the essential steps of this argument are reversible and so,
after using Theorem 1, we arrive at Theorem 3 as asserted. Full de-
tails are given in [3].

These results can be extended to (right) vector bundles over F,
where F denotes the field of real numbers, complex numbers or qua-
ternions. Vector spaces over F are endowed with the usual inner
product (see §20 of [4], for example) so that orthogonality is defined.
Let E be a sphere-bundle over B with structural group the orthogonal
group in the real case, the unitary group in the complex case, the
symplectic group in the quaternionic case. By an A-structure on E 1
mean a fibre-preserving map f: E—E such that fx is orthogonal to x,
in the appropriate sense, for all x©€E. Let D denote the unit ball
consisting of elements s& F such that Izl =1, and let S denote the
unit sphere, where Izl =1. I describe E as homotopy-symmetric if
there exists a map %: E X D—E such that

() ph(x,2)=px (xEE,zED),

(ii) h(x,2)=x-3 (xEE, zE.S).

By arguments similar to those used in the real case it can be shown
that the existence of an A-structure implies homotopy-symmetry,
and that the converse holds when B satisfies similar conditions to
those in Theorem 1.

The notion of A-type is extended to Kr(B), in the obvious way.
There is no difficulty in generalizing Theorem 2. The generalization
of Theorem 3 asserts that the elements of A-type coincide with the
kernel of JT, where

T: K¢(B) — Kr(B A Pr(1))

is defined by taking the tensor product with the canonical left line
bundle’ over Pr(1), the left projective line. Details are given in [3].
We describe an A-structure f: E—E as equivariant if

flaz) = f(z):3 (* € E,zES).

Consider the case when B is a point-space and E =S, the unit sphere
in the m-dimensional vector space over F. An A-structure f on S,
determines a nonsingular vector field, by taking the tangent at x to
the great circle through fx. If f is equivariant we obtain an induced

5 As defined in §4 of [1].
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nonsingular vector field on the left (#—1)-dimensional projective
space S,/S. Since complex and quaternionic projective spaces have
nonzero Euler number it follows that equivariant 4-structures cannot
exist unless F is real.
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