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Let E be an (n — l)-sphere bundle over a base space B, with the 
orthogonal group as structural group. By an almost-complex structure 
on E we mean a reduction of the structural group to the unitary 
group. By an A-structure on £ I mean a fibre-preserving map/: E—>E 
such that fx is orthogonal to x for all xÇzE. For example, an almost-
complex structure determines such a map through the action2 of the 
scalar / such that J 2 = — 1. Note that n must be even if an ^-struc­
ture exists. When E is trivial this necessary condition is also sufficient. 

I describe E as homotopy-symmetric if lÇ=u:E—>E, by a fibre-
preserving homotopy, where u denotes the antipodal map given by 
ux = — x. This condition also implies that n is even. An A -structure 
f on E determines a fibre-preserving homotopy ft ( / £ / = [0, l]), 
where ftx = x cos rt+f(x) sin irt, and so E is homotopy-symmetric. I 
assert that the converse holds in the stable range,3 so that we have 

THEOREM 1. Let B be a finite complex such that dim B ^ w—4. Then 
E admits an A-structure if and only if E is homotopy-symmetric. 

A proof can be given as follows. Let p: E—>B denote the fibration. 
Let E' denote the space of pairs (x, y), where x, yÇîE, such that 
px = py and such that x is orthogonal to y. We fibre E' over E with 
projection p' given by p'(x, y) =#. An -4-structure ƒ on E determines 
a cross-section ƒ': E—»E', where ƒ'# = (x, fx), and conversely a cross-
section determines an A -structure. Let E" denote the space of paths 
X in E such that p\ is stationary in B and such that X(0) =X(1). We 

1 Research partly supported by the National Science Foundation. 
8 We recall that the centre of the structural group acts on the bundle. 
3 The stable range, in relation to this problem, is not quite as extensive as the 

stable range of ordinary theory. 
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fibre JE" over E with projection p" given by £"X«X(0). Then p"h**p'9 

where h: 22'—>£" is the map defined by 

*(#> y)(0 *= * cos Tt + y sin rt (t £ /)• 

A fibre-homotopy ft of 1 into u determines a cross-section ƒ": E—+E", 
where ƒ"(*)(/) =ƒ«(*), and conversely. 

Consider the fibre S11"1 of the original fibration p\E-^B which 
contains the basepoint * £ £ . The fibre of p':E'-*E over e can be 
identified with Sn~~2, the equator orthogonal to e. The corresponding 
fibre of p": E"-*E can be identified with Î2(5n~1)» the space of paths 
in 5n~1 from « to —e, so that A maps x£zSn~2 into the great semicircle 
through x. It follows that the Freudenthal suspension can be ex­
pressed as the composition 

n* 0 

where 0 denotes the Hurewicz isomorphism. Therefore A* is injective 
for r <2n — 5 and surjective for r ̂ 2«—5. However 

dim E = n — 1 + dim B g 2» — 5, 

by hypothesis, and so the coefficient homomorphism 

H*(E, w&-*)) -+ *'(£, ^(Q(S^1))), 4 

induced by h* is injective for j<i, surjective for j£i. Hence it follows 
by obstruction theory, as in [2], that p'\ E'—*E admits a cross-section 
if p"\ E"—*E does so. This proves Theorem 1. 

Now consider the (reduced) Grothendieck group KR(B) formed 
from real vector bundles over B. If £ is a sphere-bundle over B we 
denote by [E] the class in KR(B) of the associated euclidean bundle. 
I say that an element XÇZKR(B) is of A -type if x = [E] where £ is a 
sphere-bundle which admits A -structure. By an argument similar to 
that used to prove Theorem 1 we obtain 

THEOREM 2. Let B be a finite-dimensional complex. Let E be an 
(n — l)-sphere bundle over B where n is even and dim B-^n—4. Then E 
admits A-structure if [E] is of A-type. 

From this it is not difficult to show that the elements of A -type in 
KR(B) form a subgroup. Our main result is a determination of this 
subgroup as follows. Let 

T: KR(B)-+KR(SB) 

denote the homomorphism given by taking the tensor product with 
the class of the canonical line bundle over the real projective line. 



1969] ON SPHERE-BUNDLES. I 619 

Let J have its standard meaning, as in [l ], for example. Then we have 

THEOREM 3. An element X&ËR(B) is of A-type if and only if 
JT(x)=0. 

It is well known4 that the kernel of T coincides with the image of 
the homomorphism 

Kc(B) -> KR(B) 

given by taking the underlying real vector bundle. It follows that 
T(x) = 0 if and only if x = [JE], where £ is a sphere-bundle which ad­
mits almost-complex structure. It turns out, after a little calculation, 
that T and JT have the same kernel when B is a sphere or one of the 
ordinary projective spaces. However, the kernels are different when 
B is the Cayley projective plane, and so there exists a stable bundle 
over this 16-dimensional manifold which admits an ^-structure but 
not an almost-complex structure. 

Outside the stable range there are some fragmentary results. For 
example it is shown by G. Whitehead [S] that the tangent sphere-
bundle to Sn admits an A -structure if and only if » = 2 or 6. I do not 
know of any manifold where the tangent bundle admits an ^-struc­
ture but not an almost-complex structure. 

An A -structure ƒ determined by an almost-complex structure has 
the properties that (i) uf—fu, and (ii) ƒ* = #, where u denotes the 
antipodal map as before. It might be interesting to study conditions 
for the existence of A -structures with one or both of these properties. 

The following is an indication of the proof of Theorem 3. We repre­
sent points on the circle S by complex numbers of unit modulus. Let 
p:E—>B be as before. Consider the space Ë formed from EXS by 
identifying (x, z) with (—x, —z) for all x £ E , z£S . We fibre Ë over 
B XS with projection p given by j>(x, z) = (px, z2). The sphere-bundle 
structure is completed in the obvious way. The vector bundle asso­
ciated with Ë is the tensor product of the vector bundle associated 
with E and the canonical line bundle over S. 

Let S+ denote the upper semicircle of S. Suppose that E is homo-
topy-symmetric. Then there exists a map g:EXS+—*-E such that 
p(x, z) *=px for all * £ £ , s £ S + , and such that 

g(x, 1) « * « $(-*, - 1 ) . 

We extend g to a map hi EXS—*E so that h(x, z)~h(—x, —2), for 
all xGE, z G 5. Then pk*=lp, where k: Ë—>£ is induced by h and 

4 I understand this version of a result of Bott's can be found in D. W. Anderson's 
unpublished thesis. An independent proof by R. Wood is also unpublished. 



620 I. M. JAMES [May 

I: B XS—+B is the left projection. Since k maps one of the fibres of È 
homeomorphically onto the corresponding fibre of E it follows that 
Ë is fibre-homotopically equivalent to /*(£). In terms of K-theory 
this implies that T([£] ) lies in the kernel of / . When £ is a stable 
bundle the essential steps of this argument are reversible and so, 
after using Theorem 1, we arrive at Theorem 3 as asserted. Full de­
tails are given in [3]. 

These results can be extended to (right) vector bundles over F, 
where F denotes the field of real numbers, complex numbers or qua­
ternions. Vector spaces over F are endowed with the usual inner 
product (see §20 of [4], for example) so that orthogonality is defined. 
Let E be a sphere-bundle over B with structural group the orthogonal 
group in the real case, the unitary group in the complex case, the 
symplectic group in the quaternionic case. By an A-structure on £ I 
mean a fibre-preserving map/ : E—>E such that fx is orthogonal to x> 
in the appropriate sense, for all xEE. Let D denote the unit ball 
consisting of elements zEF such that | s | ^ 1 , and let 5 denote the 
unit sphere, where \z\ = 1. I describe E as hornotopy-symmetric if 
there exists a map h: E XD-+E such that 

(i) ph(x,z)=px (xEE,zeD), 
(ii) h(x,z)=x-z (xEE,zES). 

By arguments similar to those used in the real case it can be shown 
that the existence of an ^-structure implies homotopy-symmetry, 
and that the converse holds when B satisfies similar conditions to 
those in Theorem 1. 

The notion of A -type is extended to KF(B), in the obvious way. 
There is no difficulty in generalizing Theorem 2. The generalization 
of Theorem 3 asserts that the elements of A -type coincide with the 
kernel of JT, where 

T: KF(B) -* KR{B A PF(1)) 

is defined by taking the tensor product with the canonical left line 
bundle5 over ? F ( 1 ) , the left projective line. Details are given in [3]. 

We describe an -4-structure ƒ : £—>E as equivariant if 

ƒ(*«) =ƒ(*) '* (xEEyzeS). 

Consider the case when B is a point-space and E = 5», the unit sphere 
in the w-dimensional vector space over F. An A -structure ƒ on 5„ 
determines a nonsingular vector field, by taking the tangent at x to 
the great circle through fx. If ƒ is equivariant we obtain an induced 

6 As defined in §4 of [ l] . 
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nonsingular vector field on the left (w-l)-dimensional projective 
space Sn/S. Since complex and quaternionic projective spaces have 
nonzero Euler number it follows that equivariant A -structures cannot 
exist unless F is real. 
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