
DIFFERENTIABILITY THEOREMS FOR WEAK 
SOLUTIONS OF NONLINEAR ELLIPTIC 

DIFFERENTIAL EQUATIONS1 

BY CHARLES B. MORREY, JR. 

I shall begin by speaking about the extremals of an integral of the 
form 

(1) ƒ(*, G) = f f[x, z(x), Vz(x)]dx 
J o 

where G is a domain in R9
f 

(2) x = (x1, • • • , xv), z = (z1, • • • , 2*0, dx = dx1 • • • dxv, 

z(x) is a vector function, Vz denotes its gradient which is the set of 
functions {z,a} where z,a denotes dzi/dxa, and f(x, z, p) (p= {pa}) is 
generally assumed continuous in all its arguments. The integrals 
fi(l + (dz/dxy)^dx and JJ0[(dz/dxiy + (dz/dx*y]dxldx* are familiar 
examples of integrals of the form (1) in which N=l in both cases, 
v = 1 in the first case, and v = 2 in the second case and the correspond­
ing functions ƒ are defined, respectively, by 

f(x, z, p) = (i + p*y\ /(*, z, p) = (pxy + (p2y 

where we have omitted the superscripts on z and p since N= 1. The 
second integral is a special case of the Dirichlet integral which is 
defined in general by 

(3) D(z, G) = f | Vzfdx, f(x,z,p) = U f = E (Pa)\ 
J Q i,a 

Another example is the area integral 

'd(z2,z*)y Fd(zz, z1)!2 

JJo\ld(x\x^j Ld(x\x*)J 
(4) 

ra(«s»')T\ 
Los x2) J / 

, d(z\ z2)T\1 / , ! 

which gives the area of the surface 

(5) z' = z{(x\ x2), (x1, x*) EG, i = 1, 2, 3. 

1 Presidential address delivered before the Annual Meeting of the Society in New 
Orleans on January 24, 1969; received by the editors February 24, 1969. 
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I t is to be noticed that the area integral has the special property that 
it is invariant under diffeomorphisms (1-1 differentiable mappings, 
etc.) of the domain G into other domains. This is the first example of 
an integral in parametric form. 

If ƒ is of class O in the arguments (z, p), then J is a functional of 
class Cn denned on the Banach space C^G). For each z and f, we 
define the first variation (if n^l) I\ (2, f, G) by 

(6) hiz, f ; G) = 0'(O) where <*>(A) = I(z + Xf). 

This is also the Fréchet differential of J. In case z £ C1(G) and furnishes 
a relative minimum or maximum among such functions with the 
same boundary values, then 

(7) Ix(z, f ; G) =* 0 Vf G C\G) 3 f = 0 on dG. 

Let us first consider the case where N=v = l. Then (7) becomes 

,QN f &[*> *(*>> *'(*)] -fC*) + / ' k *<*>' * ' ^ 'f ( * ) } ^ = 0 
(o) J a 

(G = (a, b)). 

If we now assume that f and Z £ C 2 ( ( J ) , then we may integrate the 
first term of (8) by parts and obtain 

f !(*)[B(%) - A'(x)]dx - 0, A(x) = f,[x, «(*), s^*)], 

-B(*) = ƒ.[*, *(*)>£(*)] 

since f (a) = f (6) = 0 . Thus we find that s satisfies Euler's equation 

(10) dfp/dx=f, or fPPz" + fpez'+fpx=fg. 

We notice that this equation is nonlinear (in general) and of the 
second order. I t is, however, linear in zn\ such an equation is called 
quasi-linear. The equation evidently becomes singular if /Pp = 0. 
Hence regular variational problems are those for which fpp never 
vanishes; in that case, it is assumed that fpp>0 (so that ƒ is convex 
in p) and this makes minimum problems more natural than maximum 
problems. 

We notice that if z is of class C2, then the equations (10) and (8) 
(assuming f = 0 on dG) are equivalent. However, equation (8) makes 
sense even if z is merely of class C1. In case z is known to be at least of 
class C1 and to satisfy (8), we say that s is a weak solution of equation 
(10). I t satisfies (10) in some distribution sense. 
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In the general case, if z{ = (z1, • • • , zN)) is of class Cl(G) and fur­
nishes a relative minimum to I among all v e c t o r s £ 0 ( 5 ) which have 
the same boundary values on dG, then (7) holds. If we assume that 
f EC2, zEC2(G) and G&C1, the technique of (8)-(10) shows that the 
vector z satisfies the system of Euler equations 

à i i 
(ID IT"^**"*1*^*' or fpi«pkz'a0^fp«zJZ'a^fpi^:=fzi> 

i = 1, • • • , N\ 

a quasi-linear system. But if we merely assume zEC1(G) and satisfies 
(7), we say that z is a weak solution of the equations (11). 

Now if we define <£(X) as in (6), we see that 0"(O) ̂ 0 , where <£"(0) 
is called the second variation and is given by 

*"(o) s ƒ,(*, r, G) 

(f = 0 on dG). 

From (12) it follows (see [38, pp. 10, 11 ]) that 

(13) fvwM&V ^ ° v x = &i> • " • > x*)> « = ttS ' • • > «*)• 

Regular problems are those for which the form (13) is positive for all 
XT^O and £5*0. ƒƒ iV= l or z/ = l, the condition (13) implies the con­
vexity o f / a s a function of £; if, also, the problem is regular, the forms 

(14) / , y ? £ ' (if v = 1) and /PaP,XaX^ (if i\T = 1) 

are required to be positive definite. The condition in (13) does not 
imply the convexity of ƒ in all the p*a taken together in the general 
case. However, in all regular cases, the Euler equations form a 
strongly elliptic system in the sense defined by Nirenberg [45]. 

Now we observe that the equations (7) form a special case of the 
equations 

,. CN I {£«(*)A*[x, Z(X), VS(*)] + t\x)Bi[%, z(x), Vz(x)]]dx = 0 
(15) J Q 

V f G C 1 ( G ) 9 f = 0 ondG, 

where we have replaced fPia(x, z, p) by A"(xf z, p) and ƒ«*• by JB»-. If 
zÇzCl(G) and satisfies (15), we say that 0 is a weak solution of the 
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equations 

d a 

(16) Ai = Bif i= 1, • • • ,N. 
dxa 

Of course we may consider equations of higher order and integrals 
involving derivatives of higher order. For that purpose we introduce 
the following notation: We let a — (au • • • , av), in which each ax is 
a nonnegative integer, be a multi-index, and denote 

(17) | a\ = « ! + • • • +a„ D-<t> = 
(dxl)al • • • (dxv)a" 

where Da<j>=<j> if a = 0. Then, if 

I(z, G) = f f[x, Dz(x)]dx, Dz(x) = {D***(x)}9 
(18; J Q 

0 ^ \a\ Snii, i = 1, • • • , N, 

the first variation of I is given by 

(19) /i(s,r;G)= f E E ^ ' W ' / p ' k ^ W ] ^ . 

If each 2 < e O ( S ) and Ji(s, f ; G) = 0 for all such f3J9af* = 0 on ÔG 
for 0 ^ | a | ^ W j - l , w e say that z is a wafe solution of the equations 

(20) £ ( - l ) i * l i > / ^ = 0. 
\ct\£mi 

We may replace fpi by .4" in (19) obtaining 

(2i) f E E #y.^[* , ZM*)]^ = O vfecTiG). 

Finally, we may consider equations like (21) but in which m* is re­
placed by some integer pi and, in A", Dz stands for {l>V} where a 
and j3 satisfy proper inequalities. As an example of these more general 
equations, we give 

(22) J o 

+ Ça[x, z, Vs, V2z]}dx = 0. 

In general we shall not discuss equations more general than (21). In 
all these cases the problem is to find conditions on the A? in (21) which 
imply that any weak solution of (21) is a sufficiently differentiable solu-
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tion of the corresponding differential equations (or perhaps possesses 
some additional differentiability). Actually we shall often allow our 
weak solutions to be in properly chosen Sobolev spaces; we shall give 
more details later. 

The general nature of the problem above is to conclude differen­
tiability of solutions in addition to the minimum required to be solu­
tions of the given equations. One of the earliest papers along this line 
was Hilberfs famous address [18] in which he proposed some 23 
problems. Of these, the 19th was to show that the regular solutions 
of any analytic regular variational problem are analytic and the 23rd 
was, vaguely, to develop a theory of the calculus of variations. A 
problem more general than the 19th was solved by S. Bernstein in his 
famous memoir of 1904 [3] where he proved for the case of any ana­
lytic second order elliptic equation and solution of class C3 on a do­
main in R2 that the solution is analytic. His proof was rather long and 
many people presented simpler proofs, including H. Lewy [26], 
T. Rado [48], M. Gevrey [14], S. Bernstein himself [4], and others. 
E. E. Levi [25] proved the analyticity of the solutions of linear, 
analytic, elliptic equations of higher order in two dimensions. 
Bernstein's result was extended to solutions of class C\ on domains 
in Rn by E. Hopf [2l] and was extended to higher order systems on 
Rn by I. Petrovsky [47]. C. B. Morrey, Jr. and L. Nirenberg [40] 
showed that regular solutions of analytic linear elliptic systems satis­
fying analytic Dirichlet boundary data along an analytic portion of 
the boundary of a domain could be extended analytically across that 
portion. This result was extended to analytic nonlinear systems in 
1957/58 by A. Friedman [13] and myself [35], independently, using 
different methods. Finally, in my book [38], I treat the case of gen­
eral regular boundary conditions (in the sense of Agmon, Douglis 
and Nirenberg [ l ] ) . 

A somewhat different series of generalizations of Bernstein's result 
was begun by L. Lichtenstein [27] when he showed in 1912 that a 
solution of class C2 on a domain in R2 of an analytic variational prob­
lem (of the type in (1) with v = 2, N=l) is analytic. This result was 
extended in 1929 by E. Hopf [20] to the case where the solution was 
required only to be of class C* (of class C1 with derivatives satisfying 
Holder conditions of exponent ix) for some \x with 0<j i t< l . Morrey 
[30] extended this result further in January 1938 to the case where 
the solution was required merely to satisfy a Lipschitz condition. 

All of the results mentioned so far assumed the existence of a 
solution having certain differentiability properties. Hubert [19] was 
probably the first to use variational methods to prove the existence 
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of a harmonic function having given boundary values on a domain 
of a fairly general type. 

Tonelli, Lebesgue, Fréchet, and many others developed the so-
called "direct methods" of the calculus of variations. The idea of 
these methods is to show 

(i) that the integral to be minimized is lower-semicontinuous with 
respect to some kind of convergence, 

(ii) that it is bounded below in some class of "admissible func­
tions," and 

(iii) that there is a "minimizing sequence," i.e. a sequence for 
which the integral tends to its infimum, which converges in the sense 
required to some admissible function. 

Tonelli exploited and popularized these methods in a series of 
papers and a book [56]-[62]. He applied the methods to many one 
dimensional (i.e. v = l) problems and to some two dimensional ones. 
For the one dimensional problems, he found it expedient to allow 
absolutely continuous functions as admissible and to use uniform 
convergence. This comes about roughly as follows: Suppose that 

(23) f(x, z, p) è m I p \r - K, r > 1, m > 0, 

(which is not unreasonable since ƒ is convex in p). Then 

(24) f \zn'(x)\rdx£L 

in any minimizing sequence {zn}. From (24), one sees from the 
Holder inequality that any minimizing sequence is equicontinuous. 
I t is also true for any uniformly convergent subsequence of a mini­
mizing sequence that the limit function is also absolutely continuous 
with 

f | z'(x) \rdx ^ liminf f \ zn'(x) \rdx. 

(This type of convergence turns out to be weak convergence in the 
Sobolev-space H) (a, b) for the case where v = l.) 

For the two dimensional problems, he defined functions which he 
called absolutely continuous but then found it expedient to require 
ƒ to satisfy (23) with r>2 (where \p\ = (p\+pl)m) in order to obtain 
equicontinuous minimizing sequences. Actually if he assumed that 
f(x, zy p) *zf(x, z, 0) = 0 for all (x, z, p), he could allow r = 2. However, 
this leaves a gap, K r < 2 , in which Tonelli was unable to obtain a 
general theorem. Moreover, if one considers integrals in which v>2, 
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one soon finds that one must assume r>v in order to assure that 
minimizing sequences are equicontinuous. To see this, it is only 
necessary to observe that the functions 

iogiog(i + | H-1), I *l~*> ° < I x\ <1 

are limits of C1 functions zn in which 

/
| Vzn \

vdx and I | Vzn \
kdx for k < v/(h + 1) 

G J G 

are uniformly bounded over the unit ball G. 
In order to get a more complete existence theory, the writer and 

Calkin [4], [31 ], [32], [33 ] found it expedient to allow as admissible, 
functions which are still more general than Tonelli's functions and to 
allow correspondingly more general types of convergence and bound­
ary values. These new spaces of functions can now be identified with 
the so-called Sobolev spaces H],(G) (or Wl

v(G)) which are now used 
by many writers in many connections. Unfortunately the minimizing 
function shown to exist was known only to be in one of these general 
spaces and hence was not known to be continuous, let alone of class 
C2! However, A. Haar [17] (see also T. Rado [49]) had proved previ­
ously that if P = 2, iV = 1, and ƒ = ƒ (p), there exists a unique minimizing 
function z which is defined on a strictly convex domain G and which 
satisfies a Lipschitz condition there, provided the given boundary 
values satisfy a certain "three point condition." Combining this with 
my January 1938 result mentioned above, we obtain an existence and 
differentiability theorem for the Euler equation of any analytic varia­
tional problem of this type. During the year 1937/38, I was able to 
show for a wide class of integrals in the case v = 2, N arbitrary, that 
any minimizing vector satisfies a "Dirichlet growth" condition and 
that any solution satisfying this condition is of class C^ (w^3 , 0</z 
<1) if ƒ is and is analytic or C00 if ƒ is. I lectured on this work in the 
seminar of Professor Marston Morse during the spring of 1938. 
Notes on these lectures were prepared by H. Busemann and are still 
to be found in the library of the Institute for Advanced Study under 
his name. 

We must now define the so-called Sobolev spaces H™(G). Actually, 
these functions were used by G. C. Evans [ l l ] in his work on poten­
tial theory beginning in 1920. Others had used these functions well 
before Sobolev [55] proved his famous result in 1938. Many of the 
standard results concerning such functions were proved in the papers 
by Calkin and Morrey cited above. Since distributions and partitions 
of unity had not been introduced, different terminology was used of 
course. 
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DEFINITION. A function z is of class H™(G)> r ^ l , G open, <=»z is of 
class Lr(G) and there exist functions pa, 0 ^ | a | ^ ra , each also of 
class Lr(G) such that 

(25) f g(x)pa(x)dx = ( - I) '*" f s(*)Z>«g(*)<fc 

for every g£C°°(G) (Cc°°, compact support on G). 
I t is clear that the functions pa are uniquely determined up to null 

functions and that if z is of class H™(G) and s* =z almost everywhere 
on G, then z* is of class H™(G) and the same functions pa will do for z*. 

DEFINITION. AS in the case of the Lr spaces, the elements of the 
space H™(G) are the classes of equivalent functions of class H™(G). 
We denote the classes of equivalent functions pa by z,a or Daz and 
call them the distribution derivatives of the element z. 

It turns out that z£:H™(G)t=$z and its distribution derivatives of 
order ^ m —l£ i l J (G) , etc. Of course we may regard an element 
ZÇELH™(G) as a distribution and then the distribution corresponding 
to z, a would be the corresponding derivative of z in the distribution 
sense. The spaces H™(G) have been defined for all real m. We may 
allow real or complex functions z. 

The following theorems about these spaces are known (see, for 
instance, [38, Chapter 3]). 

The spaces IT?(G) are Banach spaces if we define 

(26) y: = z lux 
\a\zm 

for instance. Ifr = 2, they are Hubert spaces if we define 

(27) (z, w/)~ = E (*,«, w,a)°. 

If r> 1, the spaces are reflexive. 
If zGCm~1(G) and all the Daz with \a\ ^m — 1 are locally Lipschitz 

on G, then z is of class H^(G)<^ its norm (as defined in (26)) is bounded. 
Functions of class C™(G) with finite norm in (26) are dense in H^(G) ; 

if G is u strongly Lipschitz" (regular in the sense of Colder on) (see [38, 
p. 72]), the restrictions to G of functions of class CC°°(J9), where PZ)G, 
are dense in Hf(G). 

Suppose x = x(y) is a regular mapping of class Cm (m ^ 1) of H onto 
G in which all the derivatives of x(y) and of the inverse mapping y(x) are 
bounded. Then if u is of class H™(G) and 

(28) viy) = u[x(y)], 

file:///a/zm
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v£:H?(H) and the derivatives of v are obtained as usual a.e. 
Each element u*ÇzH\(G) contains a representative u which is abso­

lutely continuous along almost all lines parallel to each axis and which 
is such that if vis defined by (28), then v has the same property and is, of 
course of class H\(H). If u* contains a continuous representative, then 
that is unique and can be taken as u. 

(Sobolev [55].) If G is Lipschitz {see [38, p. 77]) and zEH^G) with 
1 ^ r O , then zÇ:L8(G) and there exists a constant C(v, r, G) such that 

ht^C-U), ,-„/(,-r). 
DEFINITION. We define the space H^0(G) to be the closure in H?(G) 

of the set C?(G). 
We have the following theorems. 

(Poincaré's inequality.) Suppose GCB(x0, R) and zÇzH%(G). Then 

ƒ | Vkz(x) \rdx g rk-mR(m~k)r J | Vmz(x) \rdx, 0 g k ^ m. 
G J G 

(a) Suppose uE:H%(G), V(x)=u(x) for xEG, and V(x)=0 else­
where. Then VÇzH™(Rv) and F £ i J ^ ( A ) for any open A D C Moreover 
DaV(x)=Dau(x) on G and D«V(x)=0 for xER.-G if 0 ^ | a | g ra 
(a.e.). 

(b) Suppose uGH?(G), DCG, v<EH?(D), v-u\D<EH%{D), U(x) 
= v(x) on D, and U(x)=u(x) on G-D. Then UEH?(G), U-u 
£:H%(G), and DaU(x) = D«v(x) on D and DaU(x) = Dau(x) on G-D 
(a.e.). 

zn—>>(tends weakly) z in H?(G)<=>Dazn—rDaz in Lr(G) for each a with 
\a\ i£m. 

The first of these results shows that 

ll2!r<> = r j I v«*|'<**1 
is equivalent to the norm \\z\\? for z(EH%(G). 

The change of variable theorem enables us to define the spaces 
H? on manifolds of class Cm (or even Cf"1) ; of course there are no 
particularly natural norms on these spaces although many satisfac­
tory norms can be defined which are topologically equivalent if the 
manifold is compact. We have the following results. 

Suppose G is strongly Lipschitz and m^l. Then bounded subsets of 
H?(G) are conditionally sequentially compact as subsets of H?~l(G). If 
Un-ru in H?(G) then un-*u in H^l~1(G). If m = l, G may be merely 
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Lipschitz {see [38, p. 77]). The theorem above is true for any bounded 
domain if we replace the spaces H?{G) and H?~l{G), respectively by 

If G is {bounded and) of class C£ l the f unctions uÇ.C? 1{G) are 
dense in any space H?{G) with r ^ 1 and there is a bounded operator B 
from H?{G) into H?~l{dG) such that Bu = u\d0 whenever u^C^"l(G). 
If Un-ru in H?(G), Bun-+Bu in H?~l{dG). Ifr>l,the mapping B is 
compact. 

We now present a sample lower-semicontinuity theorem. We need 
the fact that a convex function ƒ(£) satisfies 

m^m+fMoKf-ù v*. 
Suppose f—f{x, z, p) and thefp^ are continuous with f {x, z, p)^0for 

all {x, z, p), suppose f is convex in pfor each {x, z)} and suppose zn—>>z in 
H\{D)for each DCCG. Then 

I{z,G) ^ liminf ƒ(* , G). 

PROOF. Choose DCC.G. The weak convergence in H\{Df) for each 
D'CCG implies the strong convergence of zn to z in Li{D). By choos­
ing a subsequence, still called zn, in which I{zn, G)—>its former lim inf, 
we may assume that zn{x)-*z{x) a.e. on D. We now suppose I{z,D) 
< + » . Then, for each e>0 , there is a compact set SC.D on which 
representatives of z and Vz are continuous, on which zn converges 
uniformly to z, and which is such that 

I{z, S) > ƒ(*, D) - e 

(if I{z, D) = + oo, we may take 7(z, S)>My arbitrary). Then from 
the convexity of/, we conclude that, for # £ £ , 

f[x, Zn{x), Vzn{x)] ^ ƒ[x, Zn{x), Vz{x)] + fp[x, z{x), Vz(#)] 

' [Vzn{x) ~ Vz{x)] 

+ {fp[*> Zn{x), Vz{x)] -fp[x, Z{X), VZ{X)]} 

• [Vzn{x) - Vs(*)]. 

The weak convergence implies the weak convergence of Vzn to Vz in 
Li{S) which implies, in turn, that 

f ƒ , [* , *(*), V*(*)Hv*»(*) - Vz{x)]dx-*0. 
J 8 

The uniform convergence of zn to z on S and the uniform boundedness 
of the Li{S) norms of Vz» and Vz implies that 
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J {ƒ*[*> zn, Vz] - fp[x, z, Vz]} • [Vzn - Vz]dx -> 0. 
8 

Hence 

I(z, D) — € (or Af) ^ Hm I f[x, zn, Vz\dx ^ lim inf I(zn, G). 

We now present a sample existence theorem. 

Suppose that 
(i) ƒ and / ^ are continuous in their arguments ; 
(ii) fis convex in pfor each (#, z) ; 
(iii) for all (x, 3, p) 

ƒ(*, *, £) è w | £ |*, w > 0, * > 1; 

(iv) J7* is a nonempty family of vector functions which is compact 
with respect to weak convergence in H\(G) ; 

(v) F is a familyy closed under weak convergence in H\(G), such that 
each z in F coincides with some z* in F* on dG (i.e. z —Z*Ç.H\Q(G)) ; 

(vi) I(zo, G) < + oo for some Zo^F; and 
(vii) G is bounded. 

Then I(z, G) takes on its minimum for some z in F. 

Since we have not made any assumptions about G other than that 
it is bounded and since the admissible functions are not necessarily 
continuous, the most convenient way to specify the boundary values 
of a function z is to state that z—z*ÇzHlo(G) for some given z*. Thus 
the family F* defines the boundary values being allowed, so to speak. 
Of course F* could consist of a single function z*. In case G is at least 
Lipschitz, then the family F* could be replaced by a family of func­
tions defined on dG and then each z in F would be required to be such 
that BzÇEF*. This change would make little difference in the proof 
below if F* were closed in Lk(dG). 

PROOF. Let {zn} be a minimizing sequence; we may assume that 
I(zn, G)^I(zo, G) = M for every n. Using (iii), we find that 

f | Vzn \
kdx SL = M/m, n = 1, 2, • • • . 

J G 

From (v), we know that there exists a 2*Gi ; ,*9ww = 2 » - 4 6 ^ i o ( C : ) 
for each n. From (iv), we may extract a subsequence, still called {n} 
such that z*—rsome z*Ç:F*. We also see that JQ\ Vwn\

kdx and hence 
(since Wn£ifw(C?))||wn||i is uniformly bounded. Hence, from the 
reflexivity we conclude that, for a further subsequence, still called 
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{n}, wn—-rw in Hl(G). Since Hl0(G) is a closed linear manifold in 
H\{G) we see that W(EZHIQ(G). Thus zn—rz =z*+w and z is the desired 
solution. 

If/satisfies no additional conditions, it is not necessarily true that 
a minimizing function has any further continuity and differentiability 
properties. Rather than stating the most general conditions ensuring 
further differentiability, we state two sets of conditions on the inte­
grand function ƒ under which differentiability results have been 
obtained. We require ƒ first to satisfy the 

COMMON CONDITION. fGCl in its arguments or ƒ and fpGCH"1 for 
some n^3 and some ix with 0<fx<l. 

Besides this condition, we require that ƒ satisfy one of the following 
sets for all (x, z, p) : 

mVk - K = ƒ(*, z, p) ^ MVk 

\fP\2+\fPA2+\M2+\u\2èMlv2k-2 

(A) \f„\*+\f„\Ë*MY" 

m{V 7T ^ / . fr>ivJTraTa 
a 0 

* > 1 , 0<m^M, 0<fm£Mi, V = (1 + | s | 2 + \p\2)m 

(\fpp\ = Z (fp'vÙ > I fvz | = 12 (fpV) > I * I = Z) tó > e t c ' 
a p a 

(A') Same as (A) except that ƒ=ƒ(*, p),V=(l+ \p\2)112. 

mv" - K g ƒ(*, z, p) ^ i f F* 

(B) Wl(i?)F*~21 7T |2 ^ Z ƒ P ' P ^ i 4 ^ Afi(-R)F*-21 7T |2 

l è F , 0 < m ^ Af, F = (1 + I ^ | Y / 2 

0 < f»i(ie) ^ Mi(R) for | x |2 + | z f ^ £2 . 

We notice that (B) reduces to (A') i f /does not depend on z, except 
for the .^-condition which is somewhat meaningless since we always 
assume G bounded. To see the difference between (A) and (B), we 
notice that the ƒ defined by 

r aft i /-iA:/2 

f(x, z, />) = [! + aij(x, z)papp\ 
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satisfies the conditions (B) but not (A) if k^v and the a's EC* or 
C^"1 if n^3 and the quadratic form is positive definite. We think of 
k as the degree of ƒ in (p, z) or p. 

The first step in the proof of differentiability of the solutions is to 
note the following continuity properties of the solutions: 

If k^Vy the minimizing f unctions are Holder continuous on interior 
domains. 

PROOF. If k>v, we see by the Holder inequality that 

(29) f | 
J B(xQ,r) 

Vz\ dx ^ C(v, k)\\Vz\\lr 1+", y. = 1 - v/k, B(x0, r) C G. 

liv = k and z is minimizing, we see from either (A) or (B) that 

(30) m | p Y - K' S f(x, z,p) ^ M\p\k + L', 0 < m g M 

so that if z is minimizing 

m 

(3D 

f | Vz \vdx - I V S I[z, B(x0, r)] ^ I[Z, B(x0, r)] 
J B(xQ,r) 

f | VZ \kdx 
J B(x0,r) 

^ L'yvr
v + M 

(yv = meas B(0, 1)) 

where Z is any vector function such that Z —z(EHl[B(xo, r)]. Setting 

(32) Z(s, B)=z+ (s/r) [z(r, 6) - z], 6 G dB(0, 1), 

(z = av z on dB(x0, r)) 

it is easy to see, using the fact that 

| VZ(*, 6) | *= z\ + r 2 1 VeZ |2 = T2{ I *(r, 0) - s f + I v,*(r, 0) f } , 

that (setting d 23 a s (v~~ l)-area element on 35(0, 1)) 

<t>(r) = f | Vz\*dx ^ m~lyv(K' + L')rv 

(33) J* (*°' r ) 

+ C f | Va*(r, 0) \>d £ ^ < W W + C2r\ 
J dB(x0,r) 

It follows easily from (33) that 

(34) f | Vs |><Z* g (*(*) + CtKXr/R)"*, 
J B(x0,r) 

OSr^R, B(x0, R) C G, 
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from which (29) follows easily where, however, C depends on the 
distance d(x0, dG) of x0 from dG and ju is that in (34). The result fol­
lows from the following theorem about Sobolev spaces. 

If z satisfies a condition like (29) where C may depend on d(x0, dG) 
and JJL is any number with 0 < / * < l , then zÇzC^D) on any compact set 
DCG (see [38, p. 79]). 

The next step in the differentiability program is stated in the 
following theorem. 

Suppose f satisfies (A) or (A') for some k > 2 or satisfies (B) with 
k>v. Then I(z) = I(z, G) is of class C2 over the space Hl(G) (G bounded). If 
f satisfies (A) or (A') with Kk^2, then I(z) is of class C1 over H\(G). 
In all cases, if z is minimizing, the first differential (variation) of I 
vanishes at z. 

In other words, if z is minimizing z satisfies (7). We call any func­
tion z for which the first variation vanishes an extremal whether z is 
minimizing or not and we also call such a z a weak solution of the 
corresponding Euler equations. 

So far, we have shown the existence only of a minimizing function 
for i" but this was done for rather general functions/. Recently Palais 
and Smale [46] have found a modification of the Morse theory which 
is applicable to a wide variety of variational problems. In their 
theory an extremal is just a critical point for the integral. 

To illustrate the next step in the differentiability program, we 
sketch the proof of our January 1938 result mentioned above in which 
we assume that the extremal z satisfies a Lipschitz condition and that 
f=f(p, q), that v = 2, that / £ C j , and ƒ is regular (cf. the middle in­
equality in A or B), i.e. that 

(35) fpp(p, q)\> + 2fpq\» + fqq»> > 0 if X* + M2 > 0. 

Then z satisfies 

ƒ ƒ &•.(*, y)M%, y) + f„(*, y)B(x, y)]dxdy = 0 
(36) ° 

V f G L i P c ( G ) 

A(x, y) = fP[zx(x, y), zy(x, y)], B(x, y) = /«[same]. 

Choose f GLipc(G) and define (for h small, 9*0) 

(37) f*(*, y) = lrl\j;(x - h,y) - f(*, y)], 

*h(x, y) = hrl[z(x + h,y) - z(x, y)]. 
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If we replace f in (10) by fo, make the obvious change of variable in 
the terms involving Çx(x — h, y), etc., we obtain the equation 

(38) A-1 f f ([XAA + ÇyAB)dxdy = 0, AA = A(x + h,y)- A(x,y). 

Since z is Lipschitz, its partial derivatives exist almost everywhere 
and are bounded. Thus, for almost all (xy y), we may express AA and 
AB in terms of Zhx and zhy using the integral form of the theorem of 
the mean. When this is done, (38) becomes 

(39) I I [Çx(ahzhx + bhzhy) + £y(bhzhx + chzhy)]dxdy = 0 

where a&, bh, ch are bounded and measurable independently of h and 

(40) ah(x, y) = I fPP[zx(x, y) + tAzx, zy(x, y) + tAzy]dt 
J o 

and bh and Ch are obtained similarly from fpq andfqq. Also, from (35) 
and the boundedness of zx and zy, we conclude that there are numbers 
m and M, independent of h, such that 

(41) w(X2 + M2) ^ *h\2 + 2bh\fi + chn
2 ^ M(X2 + /x2), 0 < m ^ M. 

Now, we choose ô > 0 and define 

4>(x,y) = 1, (x,y) GG2s, 

= 1 - b~H(x, y, Cu), (*, y) G G5 - G2«, 

= 0, (x,y) EG-GS, 

Ga = {(*,;y)| £(* ,? ;*) C G} 

f = *Z*, Z* = ^ , 0 < |A| < 8. 

Then, for each A, f and Z& are Lipschitz and have support on G«. We 
also have (a.e.) 

fx = <j)(Zhx + <M/i)> f2/ = <K^î/ + <Mfc)> 

<j)Zhx = Zhx — 0 X 2 A , 4>Zhy = Zhy — <t>yZh' 

Substituting these results into (39), we find that 

ƒƒ ydhZhx + 2bhZhXZhy + ChZhy) 

2 2 2 
- **(<**** + 26fc0a*if + Ch<t>y)]dxdy = 0. 

From (41) and the definitions of <j> and Zh, we see that 
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(42) f f (z\x + z\y)dxdy ^ — o"2 f f zldxdy. 
J J G™ m J J GA 

Since z is Lipschitz, the right side of (42) is bounded independently 
of h for each S > 0 so the left side is also. Thus, for a sequence of h—>0, 
z\x—ru and zhy—rV in L2(G2Ô) for some w and p. But now zh(x, y)-^>zx(x, y) 
= p(x, y) a.e. and boundedly. Now if ^ÇzC^Gis) 

I I fahxdxdy = — I I \pxzhdxdy, 

(43) 

I l ypZhydxdy = — I I \l/yzhdxdy. 

We may let A—>0 in (43) (thru the special subsequence) and get 

I I yf/udxdy = — I I \f/xpdxdy, 
J J G2S J J G2S 

(44) 
I I ipvdxdy = — I I \pypdxdy. 

Thus PÇÏH\(GM) and u = px, v = py. Since a&, &̂ , c& tend a.e. and 
boundedly to their respective limits 

(45) a = fPP[zx(x, y), zy(x, y)], b = fpq[ ], c = / M [ ] ; 

f*#fc—>fxö, etc., strongly in L2(G2s) if f£Lipc(G25). Thus we may let 
h—>0 in (39) and conclude that £ satisfies the limiting equations 

(46) I I [£x(aux + buy) + Çy(bux + cuy)\dxdy = 0. 
J J G28 

Likewise q = zy is seen to ÇzH\(G2b) and to satisfy (46). 
Now, I proved before the war that solutions of such equations are 

Holder continuous on interior regions \iv — 2. Using that information, 
we have p and q satisfying the limit equations (46) in which a, b, and 
c are Holder continuous. From an old theorem of Lichtenstein, it 
follows that p and g£C* so that zÇzC2^ Higher differentiability 
follows by repetition. 

As was mentioned above the author carried the program above 
through for the cases where ƒ satisfies the conditions (B) with k=v = 2 
and N arbitrary during the year 1937/38. The author reported on 
this in an invited address to the Society at its meeting in Pasadena 
on December 2, 1939 [32]. The long manuscript for this work was 
approved for publication by the University of California Press in 

file:///pypdxdy
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1939 and appeared in December 1943 [33]. The writer used these 
results in his solution of the problem of Plateau on a Riemannian 
manifold [34]. 

Attempts to extend these results to (nonlinear) cases where v>2 
met with no success until De Giorgi [9] and Nash [42] independently 
showed that a solution u in H\(G) of an equation (like (46)) of the 
form 

(47) 
/

Ç,aa
afiu,fidx = 0, 

D 

Vf G n\o(D), m |x |2 ^ a«'(*)A«A* ÛM\\ |2, 

with the aaP bounded and measurable, is Holder continuous on in­
terior domains. A simplification of this work due to Moser [41 ] and 
the development of other techniques enabled the author and a stu­
dent E. R. Buley [36], [37] and simultaneously O. A. Ladyzenskaya 
and N. Uraltseva [22], [23], [24] to prove that the solutions (of a 
variational problem) GÇ£ in case the integrand function ƒ satisfies 
the conditions (A) or (A') with N= 1 and k> 1 or (B) with k^v and 
N=l, but v arbitrary in both cases. Ladyzenskaya and Uraltseva 
obtained also the differentiability results in the cases (B) where 
2 ^ f e O , provided the solution was known to be bounded. They also 
noticed that the results could be carried over to (weak) solutions z 
in H\(G) of equations of the form 

f [f ,aA«(x, z, Vz) + f £(*, z, Vz)]dx = 0 Vf G Lipc G 
J G 

provided the Aa(x, z, p) and B(x, z, p) satisfy conditions analogous 
to (A), (A'), and (B), namely, 

M l 2 + M*|2+ | £ | 2 + l^h^MxV 2 ^ 2 

(O M*l2+ M*l2+ l ^ l 2 + \BP\* ^ M\V*»~* 

* > 1 , i»i>0, F = ( 1 + H 2 + H2)1/2 

(CO The same as (C) with A=A(xt p), B = 0, V(l + \p\ *)*/», k>l. 

\B\2+\Bz\
2+\Bx\

2^Ml(R)V2k 

\A\2+\Az\
2+\Ax\

2+\BP\2^Ml(R)V2k-2 

( D ) tmWv"-21 * | 2 S A^TaT* \A9\ £ M1(R)Vk~2 

i ^ , m1(R)>0, 7 - ( l + \p\Y\ \x\2+\z\2^R2 

file:///p/Y/
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In all cases, it is assumed that the A" and Bi^Cl if « = 2 or the 
-4?E CfT1 and 5 » £ CjT2 if n ^ 3. And, of course, it is not assumed that 
4 ^ = AjP\ The condition on the quadratic form in IT really is equiva­
lent to a condition on its symmetric part 

i(A%ffi + AtfjTaTfl è m1(R)V^ | T j 2 . 

ƒ/ is to be noticed that the results above for the cases v> 2 all require N=l. 
So far, I have spoken only of variational problems in nonparame-

tric form. I t will be recalled that an integral in parametric form is one 
in which the integral is invariant under diffeomorphisms (possibly 
with positive jacobian) in the independent variables. Thus one looks 
for solutions which are "geometric surfaces" in some sense, each of 
which might have many parametric representations which might be 
vector functions giving the same value to the integral. I t turns out 
that the function ƒ for such a problem must be independent of x, must 
have N*zv, and must depend only on the vXv determinants in the 
{p^} matrix. The area integral in (4) has this property. Such func­
tions cannot be convex in the p^ although they do satisfy the condi­
tion (13) if the rank of the p matrix is v. Also, in general, ƒ is singular 
along the manifold in the £-space where the p matrix is of r a n k O . 

The problem of Plateau (the problem of finding a smooth minimal 
surface of least area) for surfaces which are images of the unit disc 
and bounded by a single given contour was solved in 1930/31 simul­
taneously by J. Douglas [lO] and T. Rado [50]. These men and 
others, including McShane [29] and Courant [7] solved the problem 
in the 1930's for surfaces of more general topological types and/or 
bounded by more than one Jordan curve. The notion of surface used 
was that of a Fréchet surface (see, for instance, [38, pp. 350-352]) 
with specified topological type. In the early 1950*3 an existence theorem 
was proved independently by Cesari [ó], Danskin [8], and Sigalov 
[54] for essentially the most general type of parametric problem with 
v = 2 using Fréchet surfaces. In all these cases, use of conformai maps 
of the surfaces essentially reduced the problem to a nonparametric 
one; the area integral was replaced by the Dirichlet integral, since 

^ E ^ = ^ _ G ^ + p2 + (EG_pi) 

The nonexistence of special maps of higher dimensional manifolds 
held up the solution of the problem of Plateau in higher dimensions 
until that of Reifenberg in 1960 [Si] , [52], [53]. He showed the exis­
tence of a compact point set of minimum Hausdorff p-measure among 
all such in RN which are bounded in a certain topological sense by a 



702 C. B. MORREY, JR. [July 

given compact set and showed that the resulting set consisted of the 
union of an open analytic manifold and a locally compact set of 
*>-Hausdorff measure zero; in general, this singular set will not be 
empty since any analytic set is minimal. Very recently, Almgren [2] 
extended Reifenberg's results to a wide class of parametric problems 
in higher dimensions using the notions of currents, developed recently 
by Fédérer and Fleming [12] and his own notion of a varifold. 

Also during the last five years, a theory of "monotone" operators 
has been developed and generalized by Minty, Browder, Visik, Lions, 
Leray, and others to yield existence theorems for (weak) solutions 
of quite general elliptic systems of the form 

(2D f Z Z Dat'.AÏ[x,Dz(x)]dx = o vr'ecTcc). 

About a year ago, the author's paper Partial regularity results for 
non-Linear elliptic systems appeared in the Journal of Mathematics 
and Mechanics [39]. In that paper, I showed that if each z*£H%*(G) 
for some k>l and m t ^ 1, and if z is a solution of (21), then G = DKJZ, 
where D is open and Z is locally compact and of measure zero and each 
zi^CnH'h2(D) provided the A? satisfy the conditions below. Additional 
differentiability of the z* follows from that of the A*. 

The methods used in the proof of that result were very different 
from those illustrated above and are too technical to present here. 
The principal new method was an adaptation of one due to Almgren. 
We assume that the Af(x, p) (p = [p£} where ]8 is a multi-index with 
0 ^ | / ? | ^mj) are of class C\ for all (x, p) and satisfy the following 
conditions: 

\A(x,p)\,\ Ax(x, p) I ^ MV*-\ \ Ap\ , \ Apx\ , \ App\ ^ MV*~* 

23 23 23 ^(x, p)ir%aT0 ^ m*V J T I , m* > 0, 
*\y—1 \a\=mi |/3|—my 

i |a|sm t-

I and a student have extended these results slightly. 
Also, about a year ago, De Giorgi produced an example to show 

that the De Giorgi-Nash-Moser results do not carry over to the cases 
N> 1 and E. Giusti and M. Miranda [16] exhibited an analytic varia­
tional problem in which N^3 and v^3 and in which z = |x\~"lx is the 
unique solution having those boundary values on 35(0, 1). Thus it 
appears that, in general, singularities are to be expected in the solu­
tions of variational problems when i V > l . However, J. Neças [43], 
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[44] has proved regularity for solutions of certain systems including 
some of higher order, in cases where v~2 and k and N arbitrary. 
There is also a paper by E. Giusti [15] in which optimal regularity 
holds except on a singular set of (v — 1) dimension zero. I t would seem 
that a continuation of research in regularity theory will have to con­
sist in proving theorems about the singular set; this would appear to 
require different techniques from those used until now. 
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