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Introduction. In the study of the geometry of a hypersurface in 
euclidean space, the two fundamental results are the existence theo­
rem and the rigidity theorem. The existence theorem states that a 
simply connected Riemannian manifold equipped with a second 
fundamental form for which the Gauss and Codazzi-Mainardi equa­
tions hold can be realized as a codimension one immersed submani-
fold of euclidean space. The rigidity theorem asserts (roughly) that 
any two such realizations differ by a rigid motion of the containing 
euclidean space. The effect of these two theorems is to reduce the 
study of immersed hypersurfaces in euclidean space to the study of 
Riemannian manifolds equipped with second fundamental forms 
satisfying the Gauss and Codazzi-Mainardi equations. 

The purpose of this paper is to generalize these two results to iso­
metric immersions of Riemannian manifolds in euclidean space with 
arbitrary codimension (always greater than zero). Our existence theo­
rem is an analogue of the result of Hirsch [2] for smooth immersions. 
I t states that a simply connected Riemannian manifold which has a 
è-plane bundle over it equipped with a bundle metric, a compatible 
connection, and a second fundamental form for which the Gauss and 
Codazzi-Mainardi equations hold can be isometrically immersed in 
euclidean space of codimension k. The rigidity theorem asserts that 
the normal bundle of an isometric immersion together with its in­
duced bundle metric, connection, and second fundamental form 
essentially determine the immersion up to a rigid motion of the 
euclidean space. 

I t should be remarked here that the techniques used to prove the 
above results also apply to isometric immersions in spheres and 
hyperbolic spaces. Results of this type and detailed proofs of the 
results announced here will appear in [4]. 

Finally, I would like to express my gratitude to Rolph Schwarzen-
berger for helpful conversations during the early stages of this work. 

1 During the preparation of this paper, the author was partially supported by 
NSF grant GR 7993. 
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1. Statement of results. We begin by putting into a bundle setting 
a well-known necessary condition on the existence of an isometric 
immersion of a Riemannian manifold in euclidean space. In what 
follows, all objects (maps, manifolds, bundles, etc.) will be differen-
tiable of class C°°. 

Let <t>: M-+Rn+k be an isometric immersion of a Riemannian »-
manifold into euclidean space, w: E—*M it's normal bundle, and 
T= TM the tangent bundle of M. As the normal bundle of an immer­
sion, E possess additional structure which we now describe. 

First of all, E has a bundle metric defined in the obvious way. 
Explicitly, the inner product of two normal vectors at a point is 
their inner product in the euclidean space. 

Secondly, E has an affine connection D where, for XÇ^TMV and N 
a normal field on M, DxN is obtained by taking the covariant deriva­
tive of N with respect to d<t>X in euclidean space and projecting onto 
the normal plane Ep = T~1(p) through <f>(p). It is easy to show that this 
connection is compatible with the metric in E defined above; that is 

(1.1) X{N, N') = {DXN, N') + {N, DXN') 

where N, N' are normal fields on M and XÇ:TMP. (Since no confu­
sion seems likely, we use the notation ( , ) both for the inner product 
in E and for the inner product on TM defined by the Riemannian 
structure.) 

Finally, E has a second fundamental form A which is a section in 
the bundle Hom {T®E, T). The definition of AxN proceeds exactly 
as the above definition of DxN except that we project onto the tan­
gent plane thru <f>{p) instead of the normal plane. I t is routine to 
prove that 

(1.2) {AxN, Y) = {X, AYN) 

for any tangent vectors X and Y on M and normal vector N. We 
define the second fundamental tensor associated with A to be the sec­
tion B in Horn {T®T, E) defined by 

(1.3) {B{X, Y), N) = {AXN, 7) 

where X, Y are tangent vectors on M and N is a normal vector. 
Clearly B is symmetric. 

As usual, we denote the Riemannian curvature tensor by R and 
define 3?, the curvature of E relative to D, by the equation 

R{X, Y)N = DxDyN - DYDXN - D[X,Y]N. 

In this context, the Gauss equations are 
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R(X, Y)Z = AXB(Y, Z) - AYB(X, Z) 

and 

R(X, Y)N = B(AXN, Y) - B(X, AYN) 

and the Codazzi-Mainardi equations are 

VXAYN - VYAxN - A[X,Y]N = AYDXN - ,4x#rN. 

In the above, V is the Levi-Civita connection on M, X, Y, and Z are 
tangent vector fields on M and N is a section in E (a normal field). 

I t is well known (see, for example, Hicks [l , p. 76]) that the Gauss 
and Codazzi-Mainardi equations are satisfied in the above situation. 
Thus, the existance of a &-plane bundle over a Riemannian manifold 
with the additional structure described above for which the Gauss 
and Codazzi-Mainardi equation hold is a necessary condition for the 
existence of an isometric immersion in Rn+k. Our existence theorem 
below asserts that, if M is simply connected, this condition is also 
sufficient. 

We call a fe-plane bundle over a manifold a Riemannian k-plane 
bundle if it is equipped with a bundle metric and compatible connec­
tion. If E is any fe-plane bundle over a Riemannian manifold M, a 
second fundamental form in £ is a section A in Hom(T®E, T) satis­
fying (1.2). If E is a Riemannian vector bundle with a second funda­
mental form A, we define the associated second fundamental tensor B 
as in (1.3). 

We can now state our main results. 

EXISTENCE THEOREM. Let M be a simply connected Riemannian 
n-manifold with a Riemannian k-plane bundle E over M equipped with 
a second fundamental form A and associated second fundamental tensor 
B. Then, if the Gauss and Codazzi-Mainardi equations are satisfied, M 
can be isometrically immersed in Rn+k with normal bundle E. 

RIGIDITY THEOREM. Let 0, <j>f: M-*Rn+k be isometric immersions of 
a Riemannian n-manifold with normal bundles E, E' equipped as 
above with bundle metrics, connections, and second fundamental forms. 
Suppose there is an isometry ƒ : M—+M that can be covered by a bundle 
map ƒ : E—±E' which preserves the bundle metrics, the connections, and 
the second fundamental forms. Then there is a rigid motion F of Rn+k 

such that Fo<t>=<j>'of. 

REMARKS, a. Note that we do not require in the existence theorem that 
the Whitney sum T®E be trivial. This in f act follows from the simply 
connectivity of M and the fact that (as we show below) a neighborhood 
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of the zero section in E admits a flat Riemannian metric. (See Milnor 

[3]-) 
b. In the rigidity theorem, it is not necessary that M be simply con­

nected. 

2. The proofs of the main theorem. In this section, we sketch the 
proofs of the existence and rigidity theorems stated in the previous 
section. The basic idea is to reduce the general case to the codimension 
zero problem for flat manifolds. We begin by considering the codi­
mension one case for a compact simply connected manifold since 
the idea of the proof is most clearly illustrated in this case. We con­
clude the section by indicating the adjustment necessary to prove 
the results in general. 

Suppose 0 : M—>Rn+1 is an isometric immersion of a compact simply 
connected Riemannian w-manifold. Choose a unit normal field N on 
M and €>0 so that the map 

<£: U = MX(-e, e)-*Rn+l 

defined by 4>(x, t) =ct>(x)+tN is an immersion. Since <£ immerses U as 
an open subset of Rn+1, the Riemannian metric induced on U is flat. 
An easy computation shows that the metric is given as follows. 

LEMMA 2.1. Identifying TU(X,t) with TMXXR, the inner product ( , ) 
on TU(X,t) induced by $ is the direct sum of the obvious metric on R 
(obtained by identifying R with the one dimensional sub space of Rn+l 

generated by Nx) with the metric 

(X, Y) = (X + AxtN, Y + AYtN) 

where X, F £ TMX, ( , ) is the inner product on TMxy and A the second 
fundamental form of the immersion </>. 

To prove the existence theorem in this case, suppose £ is a line 
bundle over M equipped as in the existence theorem. Choose a unit 
section N in £ , define a metric on the manifold E as in Lemma 1.2, 
and let U be the tubular neighborhood of the zero section in E on 
which the metric is nonsingular. This metric obviously induces the 
original metric on M. 

The following two lemmas complete the proof of the existence 
theorem. 

LEMMA 2.2. If the Gauss and Codazzi-Mainardi equations are satis­
fied, the metric defined above on U is flat. 

LEMMA 2.3. Suppose V and W are flat Riemannian m-manifolds, V 
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simply connected, and W complete. Then there is an isometric immer­
sion of V into W. 

The first of these lemmas follows from a straightforward computa­
tion and is given (in full generality) in [4]. The second lemma is es­
sentially well known. 

The proof of the rigidity theorem is easier. Suppose </>, 0':Af—>i?n+1 

are isometric immersions and ƒ: M—>M isometry preserving sec­
ond fundamental forms. By Lemma 2.1, we can extend ƒ to an iso­
me t ry / : U—>U (where 0 and 0 ' extend to immersions $, 4>'\ U—±Rn+1). 
Let VC U be a coordinate ball on which both f and 4>fof are em-
beddings and F a rigid motion of Rn+1 such that T^o l̂ V = 4>'of\ V. It 
then follows easily that Fo$ = (j>'of so that Focf) =<j>fof. 

The only significant adjustment needed to prove the theorems in 
arbitrary codimension is in Lemma 2.1. Suppose <t>: M—>Rn+k is an 
isometric immersion with normal bundle T: E-^M and U a tubular 
neighborhood of the zero section in E for which <f> extends to an 
immersion $ : U—*Rn+k. Let TEc^H® V be the decomposition into 
horizontal and vertical subbundles defined by the connection D where 
H~w*TM and Vc^w*E. The appropriate generalization of Lemma 
2.1 is the following. 

LEMMA 2.4. The metric on TUc^H® V induced by the immersion $ 
is the direct sum of the metric on V induced by the equivalence V~T*E 

from the given metric on E with the metric ( , ) on H given by 

(X', Y') = (X + AXZ, Y + AyZ) 

where X1, Y'£;TUz, X = dirX', Y=dirY', A is the second fundamental 
form of the immersion, and ( , ) is the metric on TM. 

The proof of this theorem is given in [4]. The remainder of the 
proofs of the existence and rigidity theorems proceed essentially as 
in the codimension one case. 
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