ON THE SPACE OF HOMEOMORPHISMS OF E^3 ## BY P. R. HALL Communicated by Raoul Bott, November 1, 1968 Introduction. Hamstrom [4] has shown that the space $\mathfrak{C}(M)$ of homeomorphisms of a compact 3-manifold M with boundary is LC^n for $n=0, 1, 2, \cdots$, where $\mathfrak{C}(M)$ has the compact-open topology. Kister [7] has shown that for a 3-manifold M with boundary, $\mathfrak{C}(M)$ is LC^0 if $\mathfrak{C}(M)$ is topologised by the metric ρ^* given by $$\rho^*(f, g) = \sup_{x \in M} \rho(f(x), g(x))$$ where ρ is the natural metric for some locally finite triangulation of M. He has also shown [6] that $\mathfrak{V}(E^n)$ is locally contractible in the topology induced in $\mathfrak{V}(E^n)$ by the usual Euclidean metric. However, if M is not compact, different metrics on M give rise to different topologies on $\mathfrak{K}(M)$ in some of which $\mathfrak{K}(M)$ is not LC^0 . Fort [5] has shown that if P is the plane then $\mathfrak{K}(P)$ is LC^0 if $\mathfrak{K}(P)$ has the compact-open topology. In this note we extend his result to E^3 . ## Results. THEOREM. $\Re(E^3)$ with the compact-open topology is LC^n for $n = 0, 1, 2, \cdots$. PROOF. With the compact-open topology $\mathfrak{W}(E^3)$ is a topological group and we need only prove the assertion that $\mathfrak{W}(E^3)$ is LC^n at the identity i. Let U be a neighbourhood of i. Then there exists an open set V of the form $\bigcap_{i=1}^{n} (A_i, V_i)$, where (A_i, V_i) is the set of all elements of $\mathfrak{C}(E^3)$ which map the compact set A_i into the open set V_i , such that $i \in V \subset U$. There exists an $\epsilon > 0$ such that the ϵ -neighbourhood of A_i is contained in V_i , $i = 1, 2, \cdots, n$. There exist geometric balls B_1 and B_2 with $\bigcup_{i=1}^n V_i \subset B_1 \subset \text{Int } B_2$. By Theorem 5.1 of [4] there exists a $\delta > 0$ such that any mapping f of S^m into the space of homeomorphisms of B_1 into B_2 that move no point as much as δ , can be "extended" to a mapping F' of S^m into the space of homeomorphisms of B_2 onto itself which leave Bd B_2 pointwise fixed. This can be done so that each F'(s) is an extension of f(s) and F'(s) moves no point as much as $\epsilon/2$. We can define a mapping $F: S^m \to \mathfrak{R}(E^3)$ by $F(s) \mid B_2 = F'(s)$ and $F(s) \mid E^3 - B_2 = \mathrm{id} \mid E^3 - B_2$. Using Alexander's Theorem [1] as given in [2] we can define a homotopy H of F onto the identity map such that H(s,t) moves no point as much as $\epsilon/2$. We can cover B_1 with a finite number of closed $\delta/4$ balls, V_1', V_2', \cdots, V_k . Then the open set $W = \bigcap_{t=1}^k (V_t', S(V_t', \delta/4))$, where $S(V_t', \delta/4)$ is the open $\delta/4$ -neighbourhood of V_t' , is a neighbourhood of the identity in $\mathfrak{K}(E^3)$. If f is a map of S^m into W then the "restriction" $f \mid B_1$ defined by $f \mid B_1(s) = f(s) \mid B_1$ is a mapping of S^m into the space of homeomorphisms of B_1 into B_2 which move no point as much as δ . Then, as above, there is an "extension" F of $f \mid B_1$ which maps S^m into $\mathfrak{K}(E^3)$ and a homotopy H of F onto the identity such that $$H(s, 0) = identity, \qquad H(s, 1) = F(s),$$ and $H(s, t) \in U$ for all $s \in S^m$ and $t \in I$. Define K(s, t) to be $(H(s, t))^{-1}f(s)$. Then H(s, 0) is f(s), and $H(s, 1) = \bar{f}(s)$ is the identity on B_1 for all $s \in S^m$. f is homotopic to \bar{f} in U. Define a homotopy G of \bar{f} onto the identity by topy of oil onto the identity by $$G(s, t)(x) = 1/t\tilde{f}(s)(tx), \qquad t \neq 0$$ and $$G(s, 0)(x) = x.$$ Therefore f is homotopic to the identity and $\mathfrak{R}(E^3)$ is LC^n for $n=0, 1, 2, \cdots$. In the same way, using conformal mapping theory (see [3] for details), it can be shown that $\mathfrak{R}(P)$, with the compactopen topology, is locally contractible. ## REFERENCES - 1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407. - 2. E. Dyer and M. E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1957), 103-113. - 3. ——, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521-532. - 4. M. E. Hamstrom, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc. No. 40 (1961). - 5. M. K. Fort, A proof that the group of all homeomorphisms of the plane onto itself is locally-arcwise connected, Proc. Amer. Math. Soc. 1 (1950), 59-62. - 6. J. M. Kister, Small isotopies in Euclidean spaces and 3-manifolds, Bull. Amer. Math. Soc. 65 (1959), 371-373. - 7. ——, Isotopies in 3-manifolds, Trans. Amer. Math. Soc. 97 (1960), 213-224. University of Port Elizabeth, Port Elizabeth, South Africa