THE SPECTRUM OF NONCOMPACT G / Γ AND THE COHOMOLOGY OF ARITHMETIC GROUPS

BY HOWARD GARLAND ${ }^{1}$
Communicated by Louis Auslander, February 13, 1969

Introduction. The purpose of this note is to announce a theorem in the representation theory of semisimple groups (Theorem 1.2, below). This theorem implies that certain spaces of square summable harmonic forms on noncompact locally symmetric spaces, associated with \mathcal{Q}-rank one arithmetic groups, are finite dimensional. Assertion (1.3) then gives information about the boundary behavior at ∞ of such forms. Combining (1.3) with the computations in [4] and Raghunathan's square summability criterion in [6], we obtain upper bounds for some betti numbers of locally symmetric spaces associated with Q-rank one arithmetic groups (these spaces are noncompact, but have the homotopy type of a finite simplicial complex (see [7])). In some cases we obtain vanishing theorems for the first and second betti numbers. For the first betti number, such a vanishing theorem was obtained in greater generality by D. A. Kazdan (see [3]) by a different method. We remark that Raghunathan's square summability criterion has been generalized to arbitrary Q-rank in [1]. Therefore an extension of Theorem 1.2 to arbitrary \mathcal{Q}-rank would yield a corresponding extension of our present results on cohomology. A detailed proof of Theorem 1.2 and a full discussion of the application of this theorem to the cohomology of arithmetic groups will appear elsewhere. I wish to express my thanks to S. T. Kuroda and M. S. Raghunathan for stimulating discussions.

We now introduce some notation. Let $\boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{C} denote the fields of rational, real, and complex numbers, respectively, and let \boldsymbol{Z} denote the ring of rational integers. Let \boldsymbol{G} denote a connected, linear, semisimple, algebraic group which is defined and simple over 8 . For a subring $A \subset C$, let G_{A} denote the A-rational points of G. However, when $A=R$, we let $G=G_{R}$. We let g denote the Lie algebra of G, gc the complexification of g, and (5) the universal enveloping algebra of g_{c}. We make the convention that g is the space of right invariant vector fields on G. Hence $(\$)$ is the space of right invariant differential operators on G. We denote the center of $\$ 5$ by $\mathfrak{3}$. As is well known, 2 may be identified with the space of (adjoint-)invariant polynomials

[^0]on gc. In particular, there is a unique element $\Delta_{G} \in \mathcal{B}$, called the Casimir operator, which corresponds to the Killing form under this identification.

Let $\Gamma \subset G_{\varrho}$ be an arithmetic subgroup. We fix a Haar measure $d v$ on G, and note that $d v$ induces a G-invariant measure on G / Γ (which we again denote by $d v$). We let $L_{2}=L_{2}(G / \Gamma)$ denote the space of C^{∞}, C-valued functions f on G / Γ, such that

$$
\int_{G / \Gamma} f(x) f-(x) d v(x)<\infty
$$

(where "-" denotes complex conjugation).
We fix a maximal \boldsymbol{Q}-split torus ${ }_{\theta} S \subset G$, and we let ${ }_{\theta} A$ denote the topological identity component of the R-rational points of ${ }_{\Omega} S$. We let $\left.Z{ }_{Q} S\right)$ denote the centralizer of ${ }_{Q} S$ in G, and we let X_{Q} denote the Q-rational characters of $\left.Z{ }_{Q} S\right)$. We then define $M \subset Z\left({ }_{Q} S\right)$ by

$$
M=\bigcap_{\chi \in X_{Q}} \text { kernel } \chi^{2} .
$$

$Z\left({ }_{Q} S\right)$ is known to have an almost direct product decomposition $Z\left({ }_{Q} S\right)=M_{Q} S$, and $Z\left({ }_{Q} A\right)$, the centralizer of ${ }_{\Omega} A$ in G, a direct product decomposition

$$
Z\left({ }_{Q} A\right)=M_{Q} A,
$$

where M denotes the \boldsymbol{R}-rational points of \boldsymbol{M}.
We now fix a maximal compact subgroup $K \subset G$, such that K and ${ }_{Q} A$ have Lie algebras which are orthogonal with respect to the Cartan-Killing form of g. Let V be a finite dimensional, complex vector space with a positive definite, Hermitian inner product. Then let $\sigma: K \rightarrow$ Aut V be a representation of K which is unitary with respect to the given inner product. We let d_{σ} denote the complex dimension of V and we let ξ_{σ} denote the character of σ.

We then define a subspace L_{2}^{σ} of L_{2}, by

$$
\begin{equation*}
L_{2}^{\sigma}=\left\{f \in L_{2} \mid d_{\sigma} \int_{K} \xi_{\sigma}(k) f\left(k^{-1} x\right) d k=f(x), x \in G / \Gamma\right\} \tag{0.1}
\end{equation*}
$$

where $d k$ denotes Haar measure on K, normalized so that

$$
\int_{K} d k=1
$$

We remark that functions on G / Γ may be identified with Γ-invariant functions on G. We will make this identification whenever convenient
and we will denote corresponding functions on G and G / Γ by the same letter.

1. Statement of the main theorem. For $\nu \in C$, let

$$
\mathcal{G}_{v}^{\sigma}=\left\{f \in L_{2}^{\sigma} \mid \Delta_{G} f=\nu f\right\}
$$

Lemma 1.1. Assume \mathbf{G} has \mathbf{Q}-rank one; i.e. $\operatorname{dim}{ }_{Q} \mathbf{S}=1$. Then there exists a real number J so that if $\mathcal{G}_{p}^{\sigma} \neq\{0\}$, then ν is real and $\nu<J$.

Theorem 1.2 (Main theorem). Assume G has Q-rank one. For $c \in R$, let

$$
\mathfrak{F}_{c}^{\sigma}=\oplus_{\nu>c} \mathcal{G}_{\nu}^{\sigma} .
$$

Then $\mathfrak{F}_{c}^{\sigma}$ is finite dimensional. Moreover, if $\nu \in R, f \in \mathcal{G}_{\nu}^{\sigma}$ and $\Lambda \in \circlearrowleft$, we have $\Lambda f \in L_{2}$. If $\nu_{1}, \nu_{2} \in R, f_{l} \in \mathcal{S}_{\nu_{l}}^{\sigma}(l=1,2)$, and $\Lambda_{1}, \Lambda_{2} \in \mathscr{G}$, then for $X \in \mathfrak{g}$, we have

$$
\begin{equation*}
\int_{G / \Gamma}\left(X \Lambda_{1} f_{1}\right)\left(\Lambda_{2} \overline{f_{2}}\right) d v=-\int_{G / \Gamma}\left(\Lambda_{1} f_{1}\right)\left(X \Lambda_{2} \overline{f_{2}}\right) d v \tag{1.3}
\end{equation*}
$$

The following is an immediate consequence of Lemma 1.1 and Theorem 1.2.

Corollary 1.4. The eigenvalues of Δ_{G} in L_{2}^{σ} have no finite point of accumulation. ${ }^{2}$
2. An indication of the proof of the main theorem. In this section we assume G has \boldsymbol{Q}-rank one. Let $P \subset G$ be a minimal \boldsymbol{Q}-parabolic subgroup and let P denote the R-rational points of P. We let U denote the unipotent radical of P and U the R-rational points of U. After conjugating P by a suitable point in G_{\varnothing}, we can assume

$$
P=M_{Q} S U, \quad P=M_{Q} A U
$$

We let $\boldsymbol{\Omega}$ denote a set of double coset representatives for $P_{\Omega} \backslash G_{Q} / \Gamma$, and we let

$$
\Gamma_{\infty}=\bigcap_{q \in \mathbb{Z}} q \Gamma q^{-1} \cap U
$$

U / Γ_{∞} is compact, and we can therefore fix a Haar measure $d u$ on U so that $\int_{U / \Gamma_{\infty}} d u=1$. For $f \in L_{2}$ and $q \in \Xi$, we define f_{q} by $f_{q}(x)$ $=f(x q), x \in G$ (f here being identified with a right Γ invariant func-

[^1]tion on $G)$. We then define f_{q}^{\prime} by
$$
f_{\boldsymbol{q}}^{\prime}(x)=\int_{U / \Gamma_{\infty}} f_{q}(x u) d u, \quad x \in G
$$

From now on, we assume $f \in \mathcal{G}_{\gamma}^{\sigma}$ for some $\nu \in R$ and some σ. In particular, $f \in L_{2}^{\sigma}$ and this means that f is a component of a V-valued, left K equivariant function. The same is then true of f_{q}^{\prime}. Moreover, since G has the generalized Iwasawa decomposition

$$
G=K M_{Q} A U
$$

and since f_{q}^{\prime} is also right U invariant, we see that f_{q}^{\prime} is uniquely determined by its restriction to $M_{Q} A$. We denote this restriction again by f_{q}^{\prime}.

Recall that $M_{Q} A$ is a direct product. We can therefore regard f_{Q}^{\prime} as a function of two variables (the M-variable and the ${ }_{Q} A$-variable). A central step in proving Lemma 1.1 and Theorem 1.2, is to determine the nature of f_{q}^{\prime} as a function of the ${ }_{\rho} A$-variable. For we can then apply the theory of cusp forms (see [2, Chapter 1]) together with arguments from the theory of elliptic operators (see [5]) to obtain the desired results. We will describe f_{q}^{\prime} as a function in the ${ }_{\Omega} A$-variable presently, but in preparation, we introduce some notation.

We let $\pi: M U \rightarrow M$ denote the natural projection. We let

$$
\Gamma_{P}=\bigcap_{q \in \mathbb{Z}}\left(q \Gamma q^{-1} \cap M U\right), \quad \text { and } \quad \Gamma_{M}=\pi\left(\Gamma_{P}\right)
$$

For each $a \in{ }_{Q} A$, we set $f_{q, a}^{\prime}(m)=f_{q}^{\prime}(m a), m \in M . f_{q, a}^{\prime}$ is then a right Γ_{M}-invariant function on M. Moreover, Γ_{M} is a discrete subgroup of M and M / Γ_{M} is compact. Hence $f_{q, a}^{\prime}$ may be regarded as a function on the compact quotient space M / Γ_{M}. We let $K_{M}=\pi(K \cap M U)$ and we define $\sigma_{M}: K_{M} \rightarrow$ Aut V, by

$$
\sigma_{M}(\pi(k))=\sigma(k), \quad k \in K \cap M U
$$

We then fix a Haar measure $d m$ on M, and define $L_{2}\left(M / \Gamma_{M}\right)$ and $L_{2}^{\sigma_{M}}\left(M / \Gamma_{M}\right)$ just as we did $L_{2}(G / \Gamma)$ and $L_{2}^{\sigma}(G / \Gamma)$, respectively. We note that $f_{q, a}^{\prime} \in L_{2}^{\sigma_{M}}\left(M / \Gamma_{M}\right)$, for all $a \in_{Q} A$. The pair (${ }_{Q} A, U$) determines an order on the roots of ${ }_{Q} A$. We then let α denote the unique simple root and $g g$ one half the sum of the positive roots. The behaviour of f_{q}^{\prime} as a function in $a, a \in_{8} A$, is then given by

Lemma 2.1. There is an orthonormal basis $\phi_{1}, \cdots, \phi_{l}, \cdots$ of $L_{2}^{\sigma_{M}}\left(M / \Gamma_{M}\right)$, a sequence of real numbers $m_{1}, \cdots, m_{l}, \cdots$ such that

Limit $_{l \rightarrow \infty} m_{l}=\infty$, and a positive number λ depending only on g , so that if $\nu \in C$ and $\mathcal{G}_{\nu}^{\sigma} \neq\{0\}$, then $\nu \in R$ and there is a finite subsequence $\phi_{i_{1}}$, $\cdots, \phi_{i_{N}}$, with $m_{i_{j}}+\nu>0, j=1, \cdots, N$, so that if $\kappa_{j}=\lambda^{-1}\left(m_{i_{j}}+\nu\right)^{1 / 2}$ (here we take the positive square root), then for all $f \in \mathcal{G}_{v}^{\sigma}, q \in \Xi$, we can find $b_{1}, \cdots, b_{n} \in C$, so that
$\exp \left({ }_{\Omega} g(\log a)\right) f_{q}^{\prime}(m a)=\sum_{j=1}^{N} b_{j} \exp \left(\kappa_{j} \alpha(\log a)\right) \phi_{i_{j}}(m), \quad a \in{ }_{\Omega} A, m \in M$.
Here $\log a$ is the unique element in the Lie algebra of ${ }_{Q} A$ which exponentiates to a.

Remark. The ϕ_{i} and m_{i} are respectively the eigenfunctions and corresponding eigenvalues of a certain (essentially) elliptic invariant differential operator on $L_{2}^{\sigma_{M}}\left(M / \Gamma_{M}\right)$ associated with Δ_{G}.

Bibliography

1. H. Garland and W. C. Hsiang, A square integrability criterion for the cohomology of arithmetic groups, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 354-360.
2. Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Math., vol. 62, Springer-Verlag, New York, 1968.
3. D. A. Kazdan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71-74=Functional Anal. Appl. 1 (1967), 63-65.
4. Y. Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka J. Math. 14 (1962), 1-20.
5. R. Narasimhan, Lectures on topics in analysis, Mimeographed Notes, Tata Institute of Fundamental Research, Bombay, 1965.
6. M. S. Raghunathan, Cohomology of arithmetic subgroups of algebraic groups. II, Ann. of Math. (2)87(1968), 279-304.
7. - A note on quotients of real algebraic groups by arithmetic subgroups, Invent. Math. 4 (1968), 318-335.

Yale University, New Haven, Connecticut 06520

[^0]: ${ }^{1}$ The author was partially supported by NSF Grant GP-7131 and a Yale University Junior Faculty Fellowship.

[^1]: ${ }^{2}$ At first we proved $\mathcal{G}^{*} \cdot$ finite dimensional. We thank R. P. Langlands for pointing out that our argument also gives the finite dimensionality of $\mathscr{F}_{a^{*}}$, and hence Corollary 1.4.

