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A Banach space is injective (resp. a (Pi space) if every isomorphic 
(resp. isometric) imbedding of it in an arbitrary Banach space Y is 
the range of a bounded (resp. norm-one) linear projection defined on Y. 

In §1 we study linear topological properties of injective Banach 
spaces and the spaces C(S) themselves; in §2 we study their conjugate 
spaces. (Throughout, " S " denotes an arbitrary compact Hausdorff 
space.) For example, by applying a result of Gaifman [3], we obtain 
in §1 that there exists a <?i space which is not isomorphic to any con­
jugate Banach space. We also obtain there that S satisfies the count­
able chain condition (the C.C.C.) if and only if every weakly compact 
subset of C(S) is separable. (S is said to satisfy the C.C.C. if every 
uncountable family of open subsets of S contains two distinct sets 
with nonempty intersection.) In §2 we classify up to isomorphism 
(linear homeomorphism) all the conjugate spaces (£*, B**, 5***, 
etc.) of the (Pi spaces B =L°°(/x) for some finite measure /x, or B = /°°(r) 
for some infinite set T. (The isomorphic classification of the spaces 
L°°(jx) for finite measures /z is given in [8].) We also determine in §2 
the injective quotients of the above spaces B, and show that every 
injective Banach space of dimension the continuum, has its dual iso­
morphic to (Z00)*. (Dimension of a Banach space Y (denoted dim Y) 
equals the minimum of the cardinalities of subsets of Y with dense 
linear span.) 

We include some of the proofs; full details of these and other results 
will appear in [7]. 

1. We say that S carries a strictly positive measure if there exists a 
fx^M(S) (the space of bounded Radon measures on S) such that 
/JL(U)>0 for all nonempty open UQS. 

THEOREM 1.1. Let S satisfy the C.C.C, and suppose that C(S) is 
isomorphic to a conjugate Banach space. Then S carries a strictly posi­
tive measure. 

PROOF. The hypotheses and the Riesz representation theorem 
imply that there exists a closed subspace A of M (S) such that C(S) 
is isomorphic to A* and A is weak* dense in M(S) (identifying M(S) 

1 This research was partially supported by NSF-GP-8964. 
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with C(S)*). If there exists a positive \x G M (S) such that every mem­
ber of A is absolutely continuous with respect to JU, then S carries a 
strictly positive measure, namely JJL. If there does not exist such a /x, 
then there exists an uncountable set T such that PÇT) is isomorphic 
to a complemented subspace of A, by the Lemma of §1 of [8]. Then 
Z°°(r) is isomorphic to a subspace of C(S), but this is impossible in 
view of the assumption that S satisfies the C.C.C., as follows from 
the next proposition (cf., also Theorem 1.4(a) below). 

LEMMA 1.2. Let S satisfy the C.C.C., and suppose that $ is an un-
countable family of open subsets of S. Then there exists an infinite se-
quence Fi, F2i • • • of distinct members of $ with C\^L1 F\^0. 

PROOF. Assume that no nonempty open subset of 5 is contained in 
uncountably many members of 9\ Define $n to be the class of all sets 
of the form Fi(~\ • • • C\Fn, where Flt • • • , Fn are n distinct mem­
bers of 3\ For each A&2, put ffA- {^G^: F~JA ) ; and put 3C 
= U {$A> i G ^ and A 9^0}. CF~3C is a pairwise disjoint family of 
open sets; hence fF^SC is at most countable since S satisfies the 
C.C.C.; thus 3C is uncountable. The above assumption implies that 
$A is at most countable for all nonempty A in 32', hence $2 is un­
countable. We then obtain by induction that $n is uncountable for 
all n. Now let Gn be the set of all points in 5 which are contained in 
at most n distinct members of £F, put G° equal to the interior of Gn, 
and let g n = {F(E;$- FC\G^7é0}. Our initial assumption and the 
argument above imply that $n is countable for all n. Hence there 
exists a nonempty F in £F such that Fr\l) *=1 G® — 0. F is of the second 
category in S by the Baire-category theorem, and hence every point 
of F except those belonging to the first category set U ^ Gn~G°ni 

belongs to infinitely many members of 3\ Q.E.D. 
REMARK. A modification of the above argument shows that the 

conclusion of Lemma 1.2 holds if we replace the assumption that S 
satisfies the C.C.C., by the hypotheses that card 3: = m and that S 
satisfies the m-chain condition (every disjoint family of open sets has 
cardinality less than m) in its statement. A consequence of this is 
that if S is Stonian and T is a set with c0(T) isomorphic to a subspace 
of C(S), then /°°(r) is isometric to a subspace of C(S). (We say that 
5 is Stonian if every open subset of S has open closure.) 

I t follows from a result of Gaifman [3] that there exists a Stonian 
space, henceforth denoted SG, satisfying the C.C.C. but carrying no 
strictly positive measure. I t is known that a space is (Pi if and only if 
it is isometric to C(S) for some Stonian S (cf. [2]). Thus Gaifman's 
result and Theorem 1.1 yield the immediate 
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COROLLARY 1.3. There exists a (Pi space which is not isomorphic to 
any conjugate Banach space. 

The next result yields some basic linear topological invariants of 
the spaces C(S). 

THEOREM 1.4. (a) S satisfies the C.C.C. if and only if every weakly 
compact subset of C(S) is separable {if and only if C(S) contains no 
isomorph of c0(T) for any uncountable set T). 

(b) S carries a strictly positive measure if and only if C(S) * contains 
a weakly compact total subset. 

(b) follows easily from the Lemma of §1 of [8] (a total set is one 
whose linear span is weak* dense). 

PROOF OF (a). We assume that S satisfies the C.C.C, and let K be 
a weakly compact subset of C(S) ; we now show that K is separable 
(this is the only nontrivial implication). Suppose K is not separable; 
then by the Krein-Smulian theorem, Ki the closed-convex-circled 
hull of Kj is also weakly compact and nonseparable. Then by Propo­
sition 3.4 of [4], Ki contains a subset homeomorphic in its weak 
topology to the one-point compactification of an uncountable set. 
I t follows that we may choose a ô > 0 , and an uncountable set TQKi, 
with | | Y | | > 8 for all 7 £ I \ such that every sequence of distinct ele­
ments of T converges weakly to zero. For each 7 £ I \ let Uy 

= { s £ S : \y(s)\ > 5 / 2 } . Lemma 1.2 implies that there exists an infi­
nite sequence 71, 72, • • • of distinct elements of T with 0/1 x Uy{ 

nonempty. Then 7t+->0 weakly, a contradiction. Q.E.D. 
An immediate consequence of Theorem 1.4(a) and the results of 

[1] is 

COROLLARY 1.5. Let K be a weakly compact subset of a Banach space 
and suppose that K satisfies the C.C.C. Then K is separable. 

Another consequence of 1.4(a) is that for any finite measure /*, 
every weakly compact subset of £°°(/x) is separable. An alternate 
proof of this fact may be given by using the following result (cf. §2 of 
[8] for the relevant definitions). 

PROPOSITION 1.6. Let the Banach space B be weakly compactly gen­
erated and satisfy the Dunford-Pettis property. Then every weakly com­
pact subset of B* is separable. 

The final result of this paragraph has as a consequence that if B is 
an injective conjugate Banach space with B* weak* separable, then 
B is isomorphic to /°° if it is of infinite dimension. 

THEOREM 1.7. Let B be an injective Banach space that is isomorphic 
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to a conjugate Banach space. Then the following conditions are equiva­
lent: 

1. B is isomorphic to a sub space of L^fjx) for some finite measure /x. 
2. If T is an uncountable set, then Z°°(r) is not isomorphic to a sub-

space of B. 
3. Every weakly compact subset of B is separable. 
4. B* contains a weakly compact total subset. 
5. There exists a finite measure /* and a closed sub space A of Ll{p) 

such that B is isomorphic to A *. 

We note that the (Pi space C(SQ) of Corollary 1.3 above satisfies 
conditions 2 and 3 but fails conditions 1, 4, and 5. 

2. Throughout this paragraph, V " denotes a finite measure, / j m 

denotes Lebesgue product measure on the product of m copies of 
[O, l ] , and c denotes the cardinality of the continuum. We regard 
L°°(/x) as a Banach algebra; by a "subalgebra" we shall mean a "con­
jugation-closed subalgebra." Given an indexed family {Xa}aei of 
Banach spaces, we denote by ^ « e r ®Xa the Banach space consist­
ing of all functions x={xa}aei with xaÇzXa for all a and 
|ldI = 2 a € r I W U « < °°. If Xa = X for all a and card 1 = m, we denote 
2laei ®Xa by 2Lm @X. 

A special case of the first and main result of this paragraph is that 
(Ie0)* and (Z/°(/Xc))* are isometric, and L°°(MC) is algebraically isometric 
to a quotient algebra of /°°. We obtain in [7] that Z00 and L™(jxt) are 
not isomorphic. 

THEOREM 2.1. Let m be an infinite cardinal number. Let B denote one 
of the Banach algebras L°°0x) for some homogeneous /x, Z°°(A) for some 
set A, or 0(0^) where G denotes the closed unit interval with endpoints 
identified; suppose dim B = m. Then 

(a) B* is isomorphic to ^mSiKMm). 
(b) B** is isomorphic to Z°°(r) where T is a set of cardinality 2m. 
(c) Let Cm denote the set of infinite cardinal numbers less than or equal 

to m, and for each nGCm, let An be a set of cardinality 2m, with An disjoint 
from An' for nj^n'. Then B* is linearly isometric to 

HT) 0 Z E © t^G*»)). 
neem «eAn 

where T is a set of cardinality 2m. 
(d) CiCr"1) is algebraically isometric to a subalgebra of B. 
(e) If S is Stonian with dim C(S)^m, then C(S) is algebraically 

isometric to a quotient algebra of B. 
(f) If Y is an injective Banach space with dim F^m, then Y is 

isomorphic to a quotient space of B. 
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(a) and (b) isomorphically determine all of the conjugate spaces 
of B as above and hence also of C[0,1 ], for one can show that C[0,1 ] * 
is isometric to C(6**o)*. 

REMARK. Let Si be Stonian and satisfy the C.C.C., and suppose 
dim C(Si) = m. A recent result of Robert Solovay (unpublished) 
shows that (d) holds if we put B = C(5i); our proof of Theorem 2.1 
then shows that all of the properties (a) through (f) hold for B. In 
particular, the word "homogeneous" may be deleted from the state­
ment of Theorem 2.1; a proof of this special case of Solovay's result 
is given in [7]. 

Our next result is a consequence of the proof of Theorem 2.1 and 
a result of Grothendieck (cf. Theorem 4.3 of [4]). 

PROPOSITION 2.2. Let Kbea weakly compact subset of a Banach space 
such that card K = c, and such that K contains a perfect nonempty sub­
set. Then C(K)* is isometric to C[0, l ] * . 

I t is easy to construct such K for which C(K) is nonseparable. 
Our final result yields a large class of Banach spaces with duals 

isomorphic to the dual of /°°; its proof uses critically the results of [ô] 
and an argument of Pelczynski's (the proof of Proposition 4 of [5]). 

THEOREM 2.3. Let the Banach space Y be isomorphic to a quotient 
space of Ie0 and a complemented subspace of C(S) for some S. Then F* is 
isomorphic to (Z00)*. 

The hypotheses apply to any injective Y with dim F = c . 
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